ترغب بنشر مسار تعليمي؟ اضغط هنا

Exposing metal and silicate charges to electrical discharges: Did chondrules form by nebular lightning?

264   0   0.0 ( 0 )
 نشر من قبل Carsten G\\\"uttler
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Guttler




اسأل ChatGPT حول البحث

In order to investigate the hypothesis that dust aggregates were transformed to meteoritic chondrules by nebular lightning, we exposed silicatic and metallic dust samples to electric discharges with energies of 120 to 500 J in air at pressures between 10 and 10^5 Pa. The target charges consisted of powders of micrometer-sized particles and had dimensions of mm. The dust samples generally fragmented leaving the major fraction thermally unprocessed. A minor part formed sintered aggregates of 50 to 500 micrometer. In a few experiments melt spherules having sizes smaller than 180 micrometer in diameter (and, generally, interior voids) were formed; the highest spherule fraction was obtained with metallic Ni. Our experiments indicate that chondrule formation by electric current or by particle bombardment inside a discharge channel is unlikely.



قيم البحث

اقرأ أيضاً

Recent laboratory efforts (Fu et al., 2014) have constrained the remanent magnetizations of chondrules and the magnetic field strengths at which the chondrules were exposed to as they cooled below their Curie points. An outstanding question is whethe r the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors $sim 10-30$, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km-radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, and thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.
Rapid infall of gas in the nuclei of galaxies could lead to the formation of black holes by direct collapse, without first forming stars. Black holes formed in this way would have initial masses of a few solar masses, but would be embedded in massive envelopes that would allow them to grow at a highly super-Eddington rate. Thus, seed black holes as large as 10^3-10^4 solar masses could form very rapidly. I will sketch the basic physics of the direct collapse process and the properties of the accreting envelopes.
The recent LIGO detection of gravitational waves (GW150914), likely originating from the merger of two $sim 30 M_odot$ black holes suggests progenitor stars of low metallicity ($[Z/Z_odot] lesssim 0.3$), constraining when and where the progenitor of GW150914 may have formed. We combine estimates of galaxy properties (metallicity, star formation rate and merger rate) across cosmic time to predict the low redshift black hole - black hole merger rate as a function of present day host galaxy mass, $M_mathrm{gal}$, and the formation redshift of the progenitor system $z_mathrm{form}$ for different progenitor metallicities $Z_mathrm{c}$. At $Z_mathrm{c}=0.1 Z_odot$, the signal is dominated by binaries in massive galaxies with $z_mathrm{form}simeq 2$, with a small contribution from binaries formed around $z_mathrm{form}simeq 0.5$ in dwarf galaxies. For $Z_mathrm{c}=0.01Z_odot$, fast mergers are possible and very recent star formation in dwarfs likely dominates. Additional gravitational wave detections from merging massive black holes will provide constraints on the mass-metallicity relation and massive star formation at high redshifts.
56 - N. I. Petrov 2021
X-ray and gamma-ray emissions observed in lightning and long sparks are usually connected with the bremsstrahlung of high-energy runaway electrons. Here, an alternative physical mechanism for producing X-ray and gamma-ray emissions caused by the pola rization current and associated electromagnetic field moving with relativistic velocity along a curved discharge channel has been proposed. It is pointed out that lightning and spark discharges should also produce a coherent radio-frequency radiation. The influence of the conductivity and the radius of the lightning channel on the propagation velocity of electromagnetic waves, taking into account the absorption, have been investigated. The existence of fast electromagnetic surface waves propagating along the lightning discharge channel at a speed close to the speed of light in vacuum is shown. The possibility of the production of microwave, X-ray and gamma-ray emissions by a polarization current pulse moving along a curved path via synchrotron radiation mechanism during the lightning leader steps formation and the very beginning of the return stroke stage is pointed out. The existence of long tails in the power spectrum is shown, which explains observations of photon energies in the range of 10-100 MeV in the TGF, as well as measured power spectrum of laboratory spark discharge.
109 - P. J. E. Peebles 2002
The simple reading of the evidence is that the large elliptical galaxies existed at about the present star mass and comoving number density at redshift z=2. This is subject to the usual uncertainties of measurement and interpretation in astronomy, bu t should be taken seriously because it is indicated by quite a few lines of evidence. And it might be a guide to a more perfect theory of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا