ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High z Surveys

556   0   0.0 ( 0 )
 نشر من قبل Michele Trenti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Trenti Stsci




اسأل ChatGPT حول البحث

We study cosmic variance in deep high redshift surveys and its influence on the determination of the luminosity function for high redshift galaxies. For several survey geometries relevant for HST and JWST instruments, we characterize the distribution of the galaxy number counts. This is obtained by means of analytic estimates via the two point correlation function in extended Press-Schechter theory as well as by using synthetic catalogs extracted from N-body cosmological simulations of structure formation. We adopt a simple luminosity - dark halo mass relation to investigate the environment effects on the fitting of the luminosity function. We show that in addition to variations of the normalization of the luminosity function, a steepening of its slope is also expected in underdense fields, similarly to what is observed within voids in the local universe. Therefore, to avoid introducing artificial biases, caution must be taken when attempting to correct for field underdensity, such as in the case of HST UDF i-dropout sample, which exhibits a deficit of bright counts with respect to the average counts in GOODS. A public version of the cosmic variance calculator based on the two point correlation function integration is made available on the web.



قيم البحث

اقرأ أيضاً

We present new measurements of the quasar luminosity function (LF) at $z sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Su baru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 le z le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $alpha = -1.23^{+0.44}_{-0.34}$, a bright-end slope $beta = -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Phi^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $dot{n}_{rm ion} = 10^{48.8 pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
Galaxy surveys that map multiple species of tracers of large-scale structure can improve the constraints on some cosmological parameters far beyond the limits imposed by a simplistic interpretation of cosmic variance. This enhancement derives from co mparing the relative clustering between different tracers of large-scale structure. We present a simple but fully generic expression for the Fisher information matrix of surveys with any (discrete) number of tracers, and show that the enhancement of the constraints on bias-sensitive parameters are a straightforward consequence of this multi-tracer Fisher matrix. In fact, the relative clustering amplitudes between tracers are eigenvectors of this multi-tracer Fisher matrix. The diagonalized multi-tracer Fisher matrix clearly shows that while the effective volume is bounded by the physical volume of the survey, the relational information between species is unbounded. As an application, we study the expected enhancements in the constraints of realistic surveys that aim at mapping several different types of tracers of large-scale structure. The gain obtained by combining multiple tracers is highest at low redshifts, and in one particular scenario we analyzed, the enhancement can be as large as a factor of ~3 for the accuracy in the determination of the redshift distortion parameter, and a factor ~5 for the local non-Gaussianity parameter. Radial and angular distance determinations from the baryonic features in the power spectrum may also benefit from the multi-tracer approach.
The results from weak gravitational lensing analyses are subject to a cosmic variance error term that has previously been estimated assuming Gaussian statistics. In this letter we address the issue of estimating cosmic variance errors for weak lensin g surveys in the non-Gaussian regime. Using standard cold dark matter model ray-tracing simulations characterized by Omega_m=0.3, Omega_Lambda=0.7, h=0.7, sigma_8=1.0 for different survey redshifts z_s, we determine the variance of the two-point shear correlation function measured across 64 independent lines of sight. We compare the measured variance to the variance expected from a random Gaussian field and derive a redshift-dependent non-Gaussian calibration relation. We find that the ratio can be as high as ~30 for a survey with source redshift z_s ~ 0.5 and ~10 for z_s ~ 1. The transition scale theta_c above which the ratio is consistent with unity, is found to be theta_c ~ 20 arcmin for z_s ~ 0.5 and theta_c ~ 10 arcmin for z_s ~ 1. We provide fitting formula to our results permitting the estimation of non-Gaussian cosmic variance errors for any weak lensing analysis, and discuss the impact on current and future surveys. A more extensive set of simulations will however be required to investigate the dependence of our results on cosmology, specifically on the amplitude of clustering.
728 - Brian Siana 2007
We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman Break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z~3 (U-dropout) Q SO candidates with 19<r<22 over 11.7 deg^2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z~3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming they are all QSOs at 2.83<z<3.44. We find that our z~4$ (g-dropout) sample suffers from both unreliability and incompleteness but present 7 previously unidentified QSOs at 3.50<z<3.89. Detailed simulations show our z~3 completeness to be ~80-90% from 3.0<z<3.5, significantly better than the ~30-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends two magnitudes fainter than SDSS and has a faint end slope of beta=-1.42 +- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z~3. We derive a maximum rate of HI photoionization from QSOs at z~3.2, Gamma = 4.8x10^-13 s^-1, about half of the total rate inferred through studies of the Ly-alpha forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of HI in the intergalactic medium at z~3.
We construct a model of H$alpha$ emitters (HAEs) based on a semi-analytic galaxy formation model, the New Numerical Galaxy Catalog ($ u^2$GC). In this paper, we report our estimate for the field variance of the HAE distribution. By calculating the H$ alpha$ luminosity from the star-formation rate of galaxies, our model well reproduces the observed H$alpha$ luminosity function (LF) at $z=0.4$. The large volume of the $ u^2$GC makes it possible to examine the spatial distribution of HAEs over a region of (411.8 Mpc)$^3$ in the comoving scale. The surface number density of $z=0.4$ HAEs with $L_{rm Halpha} geq 10^{40}$ erg s$^{-1}$ is 308.9 deg$^{-2}$. We have confirmed that the HAE is a useful tracer for the large-scale structure of the Universe because of their significant overdensity ($>$ 5$sigma$) at clusters and the filamentary structures. The H$alpha$ LFs within a survey area of $sim$2 deg$^2$ (typical for previous observational studies) show a significant field variance up to $sim$1 dex. Based on our model, one can estimate the variance on the H$alpha$ LFs within given survey areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا