ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3

215   0   0.0 ( 0 )
 نشر من قبل Mariola Ramirez
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A prominent band centered at around 1000-1300 cm-1 and associated with resonant enhancement of two-phonon Raman scattering is reported in multiferroic BiFeO3 thin films and single crystals. A strong anomaly in this band occurs at the antiferromagnetic Neel temperature. This band is composed of three peaks, assigned to 2A4, 2E8, and 2E9 Raman modes. While all three peaks were found to be sensitive to the antiferromagnetic phase transition, the 2E8 mode, in particular, nearly disappears at TN on heating, indicating a strong spin-two phonon coupling in BiFeO3.



قيم البحث

اقرأ أيضاً

We report a temperature-dependent Raman and neutron scattering investigation of the multiferroic material bismuth ferrite BiFeO3 (BFO).
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert ies. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
Clear anomalies in the lattice thermal expansion (deviation from linear variation) and elastic properties (softening of the sound velocity) at the antiferromagnetic-to-paramagnetic transition are observed in the prototypical multiferroic BiFeO3 using a combination of picosecond acoustic pump-probe and high-temperature X-ray diffraction experiments. Similar anomalies are also evidenced using first-principles calculations supporting our experimental findings. Those calculations in addition to a simple Landau-like model we also developed allow to understand the elastic softening and lattice change at T_N as a result of magnetostriction combined with electrostrictive and magnetoelectric couplings which renormalize the elastic constants of the high-temperature reference phase when the critical T_N temperature is reached.
Spin-charge-lattice coupling mediated by multi-magnon processes is demonstrated in multiferroic BiFeO3. Experimental evidence of two and three magnons excitations as well as multimagnon coupling at electronic energy scales and high temperatures are r eported. Temperature dependent Raman experiments show up to five resonant enhancements of the 2-magnon excitation below the Neel temperature. These are shown to be collective interactions between on-site Fe d-d electronic resonance, phonons and multimagnons
We have carried out temperature-dependent inelastic neutron scattering measurements of YMnO3 over the temperature range 50 - 1303 K, covering both the antiferromagnetic to paramagnetic transition (70 K), as well as the ferroelectric to paraelectric t ransition (1258 K). Measurements are accompanied by first principles calculations of phonon spectra for the sake of interpretation and analysis of the measured phonon spectra in the room temperature ferroelectric (P63cm) and high temperature paraelectric (P63/mmc) hexagonal phases of YMnO3. The comparison of the experimental and first-principles calculated phonon spectra highlight unambiguously a spin-phonon coupling character in YMnO3. This is further supported by the pronounced differences in the magnetic and non-magnetic phonon calculations. The calculated atomistic partial phonon contributions of the Y and Mn atoms are not affected by inclusion of magnetic interactions, whereas the dynamical contribution of the O atoms is found tochange. This highlights the role of the super-exchange interactions between the magnetic Mn cations, mediated by O bridges. Phonon dispersion relations have also been calculated, in the entire Brillouin zone, for both the hexagonal phases. In the high-temperature phase, unstable phonon mode at the K point is highlighted. The displacement pattern at the K-point indicates that the freezing of this mode along with the stable mode at the {Gamma}-point may lead to a stabilization of the low-temperature (P63cm) phase, and inducing ferroelectricity. Further, we have also estimated the mode Gruneisen parameter and volume thermal expansion behavior. The latter is found to agree with the available experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا