ترغب بنشر مسار تعليمي؟ اضغط هنا

Constrained BSDE and Viscosity Solutions of Variation Inequalities

50   0   0.0 ( 0 )
 نشر من قبل Mingyu Xu
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the relation between the smallest $g$-supersolution of constraint backward stochastic differential equation and viscosity solution of constraint semilineare parabolic PDE, i.e. variation inequalities. And we get an existence result of variation inequalities via constraint BSDE, and prove a uniqueness result under certain condition.

قيم البحث

اقرأ أيضاً

We introduce a notion of approximate viscosity solution for a class of nonlinear path-dependent PDEs (PPDEs), including the Hamilton-Jacobi-Bellman type equations. Existence, comparaison and stability results are established under fairly general cond itions. It is also consistent with smooth solutions when the dimension is less or equal to two, or the non-linearity is concave in the second order space derivative. We finally investigate the regularity (in the sense of Dupire) of the solution to the PPDE.
82 - Zhenjie Ren 2014
This paper introduces a convenient solution space for the uniformly elliptic fully nonlinear path dependent PDEs. It provides a wellposedness result under standard Lipschitz-type assumptions on the nonlinearity and an additional assumption formulated on some partial differential equation defined locally by freezing the path.
We study a class of non linear integro-differential equations on the Wasserstein space related to the optimal control of McKean--Vlasov jump-diffusions. We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to an Hil bert space and prove a comparison theorem for these solutions. We also show that the value function is the unique viscosity solution.
84 - Andrea Cosso 2019
We address our interest to the development of a theory of viscosity solutions {`a} la Crandall-Lions for path-dependent partial differential equations (PDEs), namely PDEs in the space of continuous paths C([0, T ]; R^d). Path-dependent PDEs can play a central role in the study of certain classes of optimal control problems, as for instance optimal control problems with delay. Typically, they do not admit a smooth solution satisfying the corresponding HJB equation in a classical sense, it is therefore natural to search for a weaker notion of solution. While other notions of generalized solution have been proposed in the literature, the extension of the Crandall-Lions framework to the path-dependent setting is still an open problem. The question of uniqueness of the solutions, which is the more delicate issue, will be based on early ideas from the theory of viscosity solutions and a suitable variant of Ekelands variational principle. This latter is based on the construction of a smooth gauge-type function, where smooth is meant in the horizontal/vertical (rather than Fr{e}chet) sense. In order to make the presentation more readable, we address the path-dependent heat equation, which in particular simplifies the smoothing of its natural candidate solution. Finally, concerning the existence part, we provide a new proof of the functional It{^o} formula under general assumptions, extending earlier results in the literature.
We consider a large family of integro-differential equations and establish a non-local counterpart of Hopfs lemma, directly expressed in terms of the symbol of the operator. As closely related problems, we also obtain a variety of maximum principles for viscosity solutions. In our approach we combine direct analysis with functional integration, allowing a robust control around the boundary of the domain, and make use of the related ascending ladder height-processes. We then apply these results to a study of principal eigenvalue problems, the radial symmetry of the positive solutions, and the overdetermined non-local torsion equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا