ﻻ يوجد ملخص باللغة العربية
We consider a large family of integro-differential equations and establish a non-local counterpart of Hopfs lemma, directly expressed in terms of the symbol of the operator. As closely related problems, we also obtain a variety of maximum principles for viscosity solutions. In our approach we combine direct analysis with functional integration, allowing a robust control around the boundary of the domain, and make use of the related ascending ladder height-processes. We then apply these results to a study of principal eigenvalue problems, the radial symmetry of the positive solutions, and the overdetermined non-local torsion equation.
We provide sufficient conditions on the coefficients of a stochastic evolution equation on a Hilbert space of functions driven by a cylindrical Wiener process ensuring that its mild solution is positive if the initial datum is positive. As an applica
In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation begin{equation}label{1} onumber - Bigl(a+bint_{{R^3}} {{{left| { abla u} right|}^2}}Bigl) Delta u =lambda u+ {| u |^{p - 2}}u+mu {|
We prove unique continuation properties of solutions to a large class of nonlinear, non-local dispersive equations. The goal is to show that if $u_1,,u_2$ are two suitable solutions of the equation defined in $mathbb R^ntimes[0,T]$ such that for some
This paper introduces a convenient solution space for the uniformly elliptic fully nonlinear path dependent PDEs. It provides a wellposedness result under standard Lipschitz-type assumptions on the nonlinearity and an additional assumption formulated
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are begin{equation} u_t= abla cdot bigg( | abla u|^{p-2} abla u bigg), quad text{ for } quad 1<p<2, end