ﻻ يوجد ملخص باللغة العربية
Energy absorption of xenon clusters embedded in helium nanodroplets from strong femtosecond laser pulses is studied theoretically. Compared to pure clusters we find earlier and more efficient energy absorption in agreement with experiments. This effect is due to resonant absorption of the helium nanoplasma whose formation is catalyzed by the xenon core. For very short double pulses with variable delay both plasma resonances, due to the helium shell and the xenon core, are identified and the experimental conditions are given which should allow for a simultaneous observation of both of them.
We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms ignite the droplet to generate a non-spherical electronic nanoplasma resulting
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and sta
The ionization dynamics of helium droplets in a wide size range from 220 to 10^6 He atoms irradiated with intense femtosecond extreme ultraviolet (XUV) pulses of 10^9 {div} 10^{12} W/cm2 power density is investigated in detail by photoelectron spectr
Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectrum of complex molecular ions with minimal perturbations to the gas phase spectrum. We have used superfluid helium nanodroplets doped with corannulene to p
Interatomic Coulombic decay (ICD) is induced in helium (He) nanodroplets by photoexciting the n=2 excited state of He^+ using XUV synchrotron radiation. By recording multiple coincidence electron and ion images we find that ICD occurs in various loca