ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation-Polarization Effects in Electron/Positron Scattering from Acetylene: A Comparison of Computational Models

62   0   0.0 ( 0 )
 نشر من قبل Patrizia Michetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Different computational methods are employed to evaluate elastic (rotationally summed) integral and differential cross sections for low energy (below about 10 eV) positron scattering off gas-phase C$_2$H$_2$ molecules. The computations are carried out at the static and static-plus-polarization levels for describing the interaction forces and the correlation-polarization contributions are found to be an essential component for the correct description of low-energy cross section behavior. The local model potentials derived from density functional theory (DFT) and from the distributed positron model (DPM) are found to produce very high-quality agreement with existing measurements. On the other hand, the less satisfactory agreement between the R-matrix (RM) results and measured data shows the effects of the slow convergence rate of configuration-interaction (CI) expansion methods with respect to the size of the CI-expansion. To contrast the positron scattering findings, results for electron-C$_2$H$_2$ integral and differential cross sections, calculated with both a DFT model potential and the R-matrix method, are compared and analysed around the shape resonance energy region and found to produce better internal agreement.

قيم البحث

اقرأ أيضاً

Recoil proton polarization observables were measured for both the p($vec {rm e}$,e$^primevec{rm p},$) and d($vec {rm e}$,e$^primevec{rm p},)$n reactions at two values of Q$^2$ using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Ba tes Linear Accelerator Center. The hydrogen and deuterium spin-dependent observables $D_{ellell}$ and $D_{{ell}t}$, the induced polarization $P_n$ and the form factor ratio $G^p_E/G^p_M$ were measured under identical kinematics. The deuterium and hydrogen results are in good agreement with each other and with the plane-wave impulse approximation (PWIA).
We present experimental results for dissociative electron attachment to acetylene near the 3 eV $^2Pi_g$ resonance. In particular, we use an ion-momentum imaging technique to investigate the dissociation channel leading to C$_2$H$^-$ fragments. From our measured ion-momentum results we extract fragment kinetic energy and angular distributions. We directly observe a significant dissociation bending dynamic associated with the formation of the transitory negative ion. In modeling this bending dynamic with emph{ab initio} electronic structure and fixed-nuclei scattering calculations we obtain good agreement with the experiment.
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi gate, employing fully polarization resolved Monte Carlo simulations, the correlated photon and electron (positron) polarization effects in multiphoton Breit-Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We showed that the polarization of e^-e^+ pairs is degraded by 35%, when the polarization of the intermediate photon is resolved, accompanied with an approximately 13% decrease of the pair yield. Moreover, the polarization direction of energetic positrons in small angle region is reversed, which originates from the pair production of hard photons with polarization parallel with electric field.
The diffusion Monte Carlo (DMC), auxiliary field quantum Monte Carlo (AFQMC), and equation-of-motion coupled cluster (EOM-CC) methods are used to calculate the electron binding energy (EBE) of the non-valence anion state of a model (H$_2$O)$_4$ clust er. Two geometries are considered, one at which the anion is unbound and the other at which it is bound in the Hartree-Fock (HF) approximation. It is demonstrated that DMC calculations can recover from the use of a HF trial wave function that has collapsed onto a discretized continuum solution, although larger electron binding energies are obtained when using a trial wave function for the anion that provides a more realistic description of the charge distribution, and, hence, of the nodal surface. For the geometry at which the cluster has a non-valence correlation-bound anion, both the inclusion of triples in the EOM-CC method and the inclusion of supplemental diffuse d functions in the basis set are important. DMC calculations with suitable trial wave functions give EBE values in good agreement with our best estimate EOM-CC result. AFQMC using a trial wave function for the anion with a realistic electron density gives a value of the EBE nearly identical to the EOM-CC result when using the same basis set. For the geometry at which the anion is bound in the HF approximation, the inclusion of triple excitations in the EOM-CC calculations is much less important. The best estimate EOM-CC EBE value is in good agreement with the results of DMC calculations with appropriate trial wave functions.
We consider small--angle electron--positron scattering in Quantum Electrodynamics. Leading logarithmic contributions to the cross--section are explicitly calculated to three loop. Next--to--leading terms are exactly computed to two loop. All the radi ative corrections due to photons as well as pair production are taken into account. The impact of newly evaluated next-to-leading and higher order leading corrections is discussed and numerical results are explicitly given. The results obtained are generally valid for high and low energy $e^+e^-$ colliders. At LEP and SLC these results can be used to reduce the uncertainty on the cross--section below the per mille level. PACS numbers 12.15.Lk, 12.20.--m, 12.20.Ds, 13.40.--f
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا