ﻻ يوجد ملخص باللغة العربية
Temperature dependencies of gap energies and magnon lifetimes are measured in the quasi-1-dimensional S=1/2 gapped quantum magnets IPA-CuCl3 and Sul-Cu2Cl4 using inelastic neutron scattering. The results are compared to those found in literature for S=1 Haldane spin chain materials and to theoretical calculations for the O(3)- and O(N)- quantum non-linear sigma-models. It is found that when the T=0 energy gap Delta is used as the temperature scale, all experimental and theoretical curves are identical to within system-dependent but temperature-independent scaling factors of the order of unity. This quasi-universality extends over a surprising broad T range, at least up to kappa T ~ 1.5 Delta.
It has been shown that a quantum quench of interactions in a one-dimensional fermion system at zero temperature induces a universal power law $propto t^{-2}$ in its long-time dynamics. In this paper we demonstrate that this behaviour is robust even i
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization i
In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, includi
We use a quantum Monte Carlo method to calculate the Neel temperature T_N of weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for T > T_N. In
For a number of quantum critical points in one dimension quantum field theory has provided exact results for the scaling of spatial and temporal correlation functions. Experimental realizations of these models can be found in certain quasi one dimens