ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Scaling of the Neel Temperature of Near-Quantum-Critical Quasi-Two-Dimensional Heisenberg Antiferromagnets

82   0   0.0 ( 0 )
 نشر من قبل Daoxin Yao
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a quantum Monte Carlo method to calculate the Neel temperature T_N of weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for T > T_N. In a single-layer mean-field theory, chi_s^{2D}(T_N)=(z_2J)^{-1}, where chi_s^{2D} is the exact staggered susceptibility of an isolated layer, J the inter-layer coupling, and z_2=2 the layer coordination number. With a renormalized z_2, we find that this relationship applies not only in the renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the quantum-disordered regime. The renormalization is nearly constant; k_2 ~ 0.65-0.70. We also study other universal scaling functions.



قيم البحث

اقرأ أيضاً

234 - J. Bauer , P. Jakubczyk , 2011
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calcu lation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for $T_c$ and $T_{rm G}$ as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between $T_c$ and $T_{rm G}$ occupies a sizable part of the phase diagram.
We study the Neel-paramagnetic quantum phase transition in two-dimensional dimerized $S=1/2$ Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long standing issue of the role of cubic interactions arisi ng in the bond-operator representation when the dimer pattern lacks a certain symmetry. We find non-monotonic (monotonic) size dependence in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is an irrelevant field in the staggered model that is not present in the columnar case, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent is $omega_2 approx 1.25$ and the prefactor of the correction $L^{-omega_2}$ is large and comes with a different sign from that of the formally leading conventional correction with exponent $omega_1 approx 0.78$. Our study highlights the possibility of competing scaling corrections at quantum critical points.
178 - C.M. Varma , Lijun Zhu , 2015
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based super conductor, and on a heavy Fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic anti-ferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and of temporal topological defects. The theory predicts a $chi({bf q}, E, T)$ (i) which is a separable function of $({bf q -Q})$ and of ($E$,$T$), (ii) at crticality, the energy dependent part is $propto tanh (E/2T)$ below a cut-off energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent $z$ is $infty$ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the $T ln T$ dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.
We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In b oth cases, we concentrate on the valence bond solid (VBS) phase and describe such a phase with the bond-operator representation. Within this formalism, the original spin Hamiltonian is mapped into an effective interacting boson model for the triplet excitations. We study the effective Hamiltonian at the harmonic approximation and determine the spectrum of the elementary triplet excitations. We then follow an analytical procedure, which is based on a modified spin-wave theory for finite systems and was originally employed to calculate the entanglement entropies of magnetic ordered phases, and calculate the entanglement entropies of the VBS ground states. In particular, we consider one-dimensional (line) subsystems within the square lattice, a choice that allows us to consider line subsystems with sizes up to $L = 1000$. We combine such a procedure with the results of the bond-operator formalism at the harmonic level and show that, for both dimerized Heisenberg models, the entanglement entropies of the corresponding VBS ground states obey an area law as expected for gapped phases. For both columnar-dimer and staggered-dimer models, we also show that the entanglement entropies increase but do not diverge as the dimerization decreases and the system approaches the Neel--VBS quantum phase transition. Finally, the entanglement spectra associated with the VBS ground states are presented.
We discuss how to locate critical points in the Berezinskii-Kosterlitz-Thouless (BKT) universality class by means of gap-scaling analyses. While accurately determining such points using gap extrapolation procedures is usually challenging and inaccura te due to the exponentially small value of the gap in the vicinity of the critical point, we show that a generic gap-scaling analysis, including the effects of logarithmic corrections, provides very accurate estimates of BKT transition points in a variety of spin and fermionic models. As a first example, we show how the scaling procedure, combined with density-matrix-renormalization-group simulations, performs extremely well in a non-integrable spin-$3/2$ XXZ model, which is known to exhibit strong finite-size effects. We then analyze the extended Hubbard model, whose BKT transition has been debated, finding results that are consistent with previous studies based on the scaling of the Luttinger-liquid parameter. Finally, we investigate an anisotropic extended Hubbard model, for which we present the first estimates of the BKT transition line based on large-scale density-matrix-renormalization-group simulations. Our work demonstrates how gap-scaling analyses can help to locate accurately and efficiently BKT critical points, without relying on model-dependent scaling assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا