ﻻ يوجد ملخص باللغة العربية
We calculate the Kondo temperature ($T_K$) and crystal-field levels of strongly correlated multiorbital systems solving the Anderson Impurity Model with the finite U Non-Crossing Approximation (UNCA) in its simplest scheme, that is, considering the self energies at lowest order in the 1/N diagrammatic expansion. We introduced an approximation to the vertex function that includes the double energy dependence and investigate its effect on the values of $T_K$ for simple electronic models. We also analyze the competition between the two spin flip mechanisms, involving virtual transitions to empty and doubly occupied states, in the determination of the ground state symmetry by including an extra diagram of higher order in $1/N.$ We finally combine the resulting simple formalism with {it ab initio} calculated electronic structures to obtain $T_K$s, ground states, and crystal field splittings in excellent agreement with experimental results for two particular Ce compounds, namely CeIn$_3$ and CeSn$_3$.
We present a high-resolution photoemission study on the strongly correlated Ce-compounds CeCu_6, CeCu_2Si_2, CeRu_2Si_2, CeNi_2Ge_2, and CeSi_2. Using a normalization procedure based on a division by the Fermi-Dirac distribution we get access to the
We present a simple approach to calculate the thermodynamic properties of single Kondo impurities including orbital degeneracy and crystal field effects (CFE) by extending a previous proposal by K. D. Schotte and U. Schotte [Physics Lett. A 55, 38 (1
Quantum magnets with spin $J=2$, which arise in spin-orbit coupled Mott insulators, can potentially display multipolar orders. We carry out an exact diagonalization study of a simple octahedral crystal field Hamiltonian for two electrons, incorporati
Starting with the heavy fermion compound CeNi$_9$Ge$_4$, the substitution of nickel by copper leads to a dominance of the RKKY interaction in competition with the Kondo and crystal field interaction. Consequently, this results in an antiferromagnetic
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de