ﻻ يوجد ملخص باللغة العربية
Quantum magnets with spin $J=2$, which arise in spin-orbit coupled Mott insulators, can potentially display multipolar orders. We carry out an exact diagonalization study of a simple octahedral crystal field Hamiltonian for two electrons, incorporating spin-orbit coupling (SOC) and interactions, finding that either explicitly including the $e_g$ orbitals, or going beyond the rotationally invariant Coulomb interaction within the $t_{2g}$ sector, causes a degeneracy breaking of the $J!=!2$ level degeneracy. This can lead to a low-lying non-Kramers doublet carrying quadrupolar and octupolar moments and an excited triplet which supports magnetic dipole moments, bolstering our previous phenomenological proposal for the stabilization of ferro-octupolar order in heavy transition metal oxides. We show that the spontaneous time-reversal symmetry breaking due to ferro-octupolar ordering within the non-Kramers doublet leads to electronic orbital loop currents. The resulting internal magnetic fields can potentially explain the small fields inferred from muon-spin relaxation ($mu$SR) experiments on cubic $5d^2$ osmate double perovskites Ba$_2$ZnOsO$_6$, Ba$_2$CaOsO$_6$, and Ba$_2$MgOsO$_6$, which were previously attributed to weak dipolar magnetism. We make further predictions for oxygen NMR experiments on these materials. We also study the reversed level scheme, where the $J!=!2$ multiplet splits into a low-lying magnetic triplet and excited non-Kramers doublet, presenting single-ion results for the magnetic susceptibility in this case, and pointing out its possible relevance for the rhenate Ba$_2$YReO$_6$. Our work highlights the intimate connection between the physics of heavy transition metal oxides and that of $f$-electron based heavy fermion compounds.
Motivated by experimental and theoretical interest in realizing multipolar orders in $d$-orbital materials, we discuss the quantum magnetism of $J!=!2$ ions which can be realized in spin-orbit coupled oxides with $5d^2$ transition metal ions. Based o
The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and reali
We describe square lattice spin liquids which break time-reversal symmetry, while preserving translational symmetry. The states are distinguished by the manner in which they transform under mirror symmetries. All the states have non-zero scalar spin
The ground-state phase diagrams of the three-orbital t2g Hubbard model are studied using a Hartree-Fock approximation. First, a complete set of multipolar order parameters for t2g models defined in terms of the effective total angular momentum jeff a
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the