ترغب بنشر مسار تعليمي؟ اضغط هنا

The trigger function of the space borne gamma-ray burst telescope ECLAIRs

175   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Schanne
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursts (GRB) sign energetic explosions in the Universe, occurring at cosmological distances. Multi-wavelength observations of GRB allow to study their properties and to use them as cosmological tools. In 2012 the space borne gamma-ray telescope ECLAIRs is expected to provide accurate GRB localizations on the sky in near real-time, necessary for ground-based follow-up observations. Led by CEA Saclay, France, the project is currently in its technical design phase. ECLAIRs is optimized to detect highly red-shifted GRB thanks to a 4 keV low energy threshold. A coded mask telescope with a 1024 cm^2 detection plane of 80x80 CdTe pixels permanently observes a 2 sr sky field. The on-board trigger detects GRB using count-rate increase monitors on multiple time-scales and cyclic images. It computes sky images in the 4-50 keV energy range by de-convolving detector plane images with the mask pattern and localizes newly detected sources with <10 arcmin accuracy. While individual GRB photons are available hours later, GRB alerts are transmitted over a VHF network within seconds to ground, in particular to robotic follow-up telescopes, which refine GRB localizations to the level needed by large spectroscopic telescopes. This paper describes the ECLAIRs concept, with emphasis on the GRB triggering scheme.



قيم البحث

اقرأ أيضاً

The X and Gamma-ray telescope ECLAIRs is foreseen to be launched on a low Earth orbit (h=630 km, i=30 degrees) aboard the SVOM satellite (Space-based multi-band astronomical Variable Objects Monitor), a French-Chinese mission with Italian contributio n. Observations are expected to start in 2013. It has been designed to detect and localize Gamma-Ray Bursts (GRBs) or persistent sources of the sky, thanks to its wide field of view (about 2 sr) and its remarkable sensitivity in the 4-250 keV energy range, with enhanced imaging sensitivity in the 4-70 keV energy band. These characteristics are well suited to detect highly redshifted GRBs, and consequently to provide fast and accurate triggers to other onboard or ground-based instruments able to follow-up the detected events in a very short time from the optical wavelength bands up to the few MeV Gamma-Ray domain.
The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While h undreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we developed a program that is capable of simulating all the rate trigger criteria and mimicking the image trigger threshold. We use this program to search for the intrinsic GRB rate. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, we find that either the GRB rate is much higher than previously expected at large redshift, or the luminosity evolution is non-negligible. We will discuss the best results of the GRB rate in our search, and their impact on the star-formation history.
The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundre ds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4571^{+829}_{-1584} GRBs per year that are beamed toward us in the whole universe. SPECIAL NOTE (2015.05.16): This new version incorporates an erratum. All the GRB rate normalizations ($R_{rm GRB}(z=0)$) should be a factor of 2 smaller than previously reported. Please refer to the Appendix for more details. We sincerely apologize for the mistake.
We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect $sim 200$ GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 $4times 4~mathrm{mm}^2$ and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8x4 matrices read by a low-noise ASIC, forming elementary modules called XRDPIX. In this paper, we also present our current efforts to investigate the performance of these modules with their front-end electronics when illuminated by charged particles and/or photons using radioactive sources. All measurements are made in different instrument configurations in vacuum and with a nominal in-flight detector temperature of $-20^circ$C. This work will enable us to choose the in-flight configuration that will make the best compromise between the science performance and the in-flight operability of ECLAIRs. We will show some highlights of this work.
Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength obs ervations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A Phase A study of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the Myriade family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 to 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا