ﻻ يوجد ملخص باللغة العربية
Gamma-ray bursts (GRB) sign energetic explosions in the Universe, occurring at cosmological distances. Multi-wavelength observations of GRB allow to study their properties and to use them as cosmological tools. In 2012 the space borne gamma-ray telescope ECLAIRs is expected to provide accurate GRB localizations on the sky in near real-time, necessary for ground-based follow-up observations. Led by CEA Saclay, France, the project is currently in its technical design phase. ECLAIRs is optimized to detect highly red-shifted GRB thanks to a 4 keV low energy threshold. A coded mask telescope with a 1024 cm^2 detection plane of 80x80 CdTe pixels permanently observes a 2 sr sky field. The on-board trigger detects GRB using count-rate increase monitors on multiple time-scales and cyclic images. It computes sky images in the 4-50 keV energy range by de-convolving detector plane images with the mask pattern and localizes newly detected sources with <10 arcmin accuracy. While individual GRB photons are available hours later, GRB alerts are transmitted over a VHF network within seconds to ground, in particular to robotic follow-up telescopes, which refine GRB localizations to the level needed by large spectroscopic telescopes. This paper describes the ECLAIRs concept, with emphasis on the GRB triggering scheme.
The X and Gamma-ray telescope ECLAIRs is foreseen to be launched on a low Earth orbit (h=630 km, i=30 degrees) aboard the SVOM satellite (Space-based multi-band astronomical Variable Objects Monitor), a French-Chinese mission with Italian contributio
The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While h
The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundre
We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to
Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength obs