ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

148   0   0.0 ( 0 )
 نشر من قبل Amy Lien
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4571^{+829}_{-1584} GRBs per year that are beamed toward us in the whole universe. SPECIAL NOTE (2015.05.16): This new version incorporates an erratum. All the GRB rate normalizations ($R_{rm GRB}(z=0)$) should be a factor of 2 smaller than previously reported. Please refer to the Appendix for more details. We sincerely apologize for the mistake.



قيم البحث

اقرأ أيضاً

The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While h undreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we developed a program that is capable of simulating all the rate trigger criteria and mimicking the image trigger threshold. We use this program to search for the intrinsic GRB rate. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, we find that either the GRB rate is much higher than previously expected at large redshift, or the luminosity evolution is non-negligible. We will discuss the best results of the GRB rate in our search, and their impact on the star-formation history.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
168 - J. Ripa , M. B. Kim , J. Lee 2015
The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger telescope (UBAT) employing the coded mask imaging technique and the detector combination of Yttrium Oxyorthosilicate (YSO) scintillating crystals and multi-anode photomultiplier tubes. The results of the laboratory tests of UBATs functionality and performance are described in this article. The detector setting, the pixel-to-pixel response to X-rays of different energies, the imaging capability for <50 keV X-rays, the localization accuracy measurements, and the combined test with the Block for X-ray and Gamma-Radiation Detection (BDRG) scintillator detector to check the efficiency of UBAT are all described. The UBAT instrument has been assembled and integrated with other equipment on UFFO-p and should be launched on board the Lomonosov satellite in late-2015.
Since the launch of Swift satellite, the detections of high-z (z>4) long gamma-ray bursts (LGRBs) have been rapidly growing, even approaching the very early Universe (the record holder currently is z=8.3). The observed high-z LGRB rate shows signific ant excess over that estimated from the star formation history. We investigate what may be responsible for this high productivity of GRBs at high-z through Monte Carlo simulations, with effective Swif/BAT trigger and redshift detection probabilities based on current Swift/BAT sample and CGRO/BATSE LGRB sample. We compare our simulations to the Swift observations via log N-log P, peak luminosity (L) and redshift distributions. In the case that LGRB rate is purely proportional to the star formation rate (SFR), our simulations poorly reproduce the LGRB rate at z>4, although the simulated log N-log P distribution is in good agreement with the observed one. Assuming that the excess of high-z GRB rate is due to the cosmic metallicity evolution or unknown LGRB rate increase parameterized as (1+z)^delta, we find that although the two scenarios alone can improve the consistency between our simulations and observations, incorporation of them gives much better consistency. We get 0.2<epsilon<0.6 and delta<0.6, where epsilon is the metallicity threshold for the production of LGRBs. The best consistency is obtained with a parameter set (epsilon, delta)=(~0.4, ~0.4), and BAT might trigger a few LGRBs at z~14. With increasing detections of GRBs at z>4 (~15% of GRBs in current Swift LGRB sample based on our simulations), a window for very early Universe is opening by Swift and up-coming SVOM missions.
117 - H. Yu 2015
Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use G RBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bells $c^-$ method to study the luminosity function and rate of emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as $L(z)propto g(z)=(1+z)^k$ with $k=2.43_{-0.38}^{+0.41}$. After correcting the redshift evolution through $L_0(z)=L(z)/g(z)$, the luminosity function can be expressed as $psi(L_0)propto L_0^{-0.14pm0.02}$ for dim GRBs and $psi(L_0)propto L_0^{-0.70pm0.03}$ for bright GRBs, with the break point $L_{0}^{b}=1.43times10^{51}~{rm erg~s^{-1}}$. We also find that the formation rate of GRBs is almost constant at $z<1.0$ for the first time, which is remarkably different from the SFR. At $z>1.0$, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and $log N-log S$ distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at $z<1.0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا