ترغب بنشر مسار تعليمي؟ اضغط هنا

When GRB afterglows get softer, hard components come into play

32   0   0.0 ( 0 )
 نشر من قبل Alberto Moretti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Moretti




اسأل ChatGPT حول البحث

We aim to investigate the ability of simple spectral models to describe the GRB early afterglow emission. We performed a time resolved spectral analysis of a bright GRB sample detected by the Swift Burst Alert Telescope and promptly observed by the Swift X-ray Telescope,with spectroscopically measured redshift in the period April 2005 -- January 2007. The sample consists of 22 GRBs and a total of 214 spectra. We restricted our analysis to the softest spectra sub--sample which consists of 13 spectra with photon index > 3. In this sample we found that four spectra, belonging to GRB060502A, GRB060729, GRB060904B, GRB061110A prompt--afterglow transition phase, cannot be modeled neither by a single power law nor by the Band model. Instead we find that the data present high energy (> 3 keV, in the observer frame) excesses with respect to these models. We estimated the joint statistical significance of these excesses at the level of 4.3 sigma. In all four cases, the deviations can be modeled well by adding either a second power law or a blackbody component to the usual synchrotron power law spectrum. The additional power law would be explained by the emerging of the afterglow, while the blackbody could be interpreted as the photospheric emission from X-ray flares or as the shock breakout emission. In one case these models leave a 2.2 sigma excess which can be fit by a Gaussian line at the energy the highly ionized Nickel recombination. Although the data do not allow an unequivocal interpretation, the importance of this analysis consists in the fact that we show that a simple power law model or a Band model are insufficient to describe the X-ray spectra of a small homogeneous sample of GRBs at the end of their prompt phase.

قيم البحث

اقرأ أيضاً

131 - E. S. Rykoff 2009
We report on a complete set of early optical afterglows of gamma-ray bursts (GRBs) obtained with the ROTSE-III telescope network from March 2005 through June 2007. This set is comprised of 12 afterglows with early optical and Swift/XRT observations, with a median ROTSE-III response time of 45 s after the start of gamma-ray emission (8 s after the GCN notice time). These afterglows span four orders of magnitude in optical luminosity, and the contemporaneous X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray flares, the broadband synchrotron spectra show that the optical and X-ray emission originate in a common region, consistent with predictions of the external forward shock in the fireball model. However, the fireball model is inadequate to predict the temporal decay indices of the early afterglows, even after accounting for possible long-duration continuous energy injection. We find that the optical afterglow is a clean tracer of the forward shock, and we use the peak time of the forward shock to estimate the initial bulk Lorentz factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with expectations.
To date, nearly all multi-wavelength modeling of long-duration gamma-ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investiga te the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10--100 for fiducial parameters. The nature of the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.
We analyze the time evolution of a two-level system prepared in a superposition of its ground state and radiatively unstable excited state. We show that by choosing appropriate means of detection of the radiated field, we can steer the evolution of t he emitter and herald its preparation in the fully excited state. We determine the probability for the occurrence of this excitation during the decay of a remote emitter.
We examine the the emission from optically bright gamma-ray burst (GRB) afterglows as the Ultraviolet and Optical Telescope (UVOT) on the Neil Gehrels Swift Observatory first begins observing, following the slew to target the GRB, while the pointing of the Swift satellite is still settling. We verify the photometric quality of the UVOT settling data using bright stars in the field of view. In the majority of cases we find no problems with the settling exposure photometry, but in one case we excise the first second of the exposure to mitigate a spacecraft attitude reconstruction issue, and in a second case we exclude the first second of the exposure in which the UVOT photocathode voltage appears to be ramping up. Of a sample of 23 afterglows which have peak V magnitudes <16, we find that all are detected in the settling exposures, when Swift arrives on target. For 9 of the GRBs the UVOT settling exposure took place before the conclusion of the prompt gamma-ray emission. Five of these GRBs have well defined optical peaks after the settling exposures, with rises of >0.5 mag in their optical lightcurves, and there is a marginal trend for these GRBs to have long T90. Such a trend is expected for thick-shell afterglows, but the temporal indices of the optical rises and the timing of the optical peaks appear to rule out thick shells.
A biased graph consists of a graph $G$ together with a collection of distinguished cycles of $G$, called balanced cycles, with the property that no theta subgraph contains exactly two balanced cycles. Perhaps the most natural biased graphs on $G$ ari se from orienting $G$ and then labelling the edges of $G$ with elements of a group $Gamma$. In this case, we may define a biased graph by declaring a cycle to be balanced if the product of the labels on its edges is the identity, with the convention that we take the inverse value for an edge traversed backwards. Our first result gives a natural topological characterisation of biased graphs arising from group-labellings. In the second part of this article, we use this theorem to construct some exceptional biased graphs. Notably, we prove that for every $m ge 3$ and $ell$ there exists a minor minimal not group labellable biased graph on $m$ vertices where every pair of vertices is joined by at least $ell$ edges. Finally, we show that these results extend to give infinite families of excluded minors for certain families of frame and lift matroids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا