ﻻ يوجد ملخص باللغة العربية
We analyze the time evolution of a two-level system prepared in a superposition of its ground state and radiatively unstable excited state. We show that by choosing appropriate means of detection of the radiated field, we can steer the evolution of the emitter and herald its preparation in the fully excited state. We determine the probability for the occurrence of this excitation during the decay of a remote emitter.
It is shown that, contrary to an existing claim, the near equality between the lifetime of the sun and the timescale of biological evolution on earth does not necessarily imply that extraterrestrial civilizations are exceedingly rare. Furthermore, on
In our model, $n$ traders interact with each other and with a central bank; they are taxed on the money they make, some of which is dissipated away by corruption. A generic feature of our model is that the richest trader always wins by consuming all
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger
We study whether one can write a Matrix Product Density Operator (MPDO) as the Gibbs state of a quasi-local parent Hamiltonian. We conjecture this is the case for generic MPDO and give supporting evidences. To investigate the locality of the parent H
Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching---where rapid increases in galaxy density truncate star formation---over a null hypothesis in which galaxies age at constant surface density ($Sigma_ee