ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2

192   0   0.0 ( 0 )
 نشر من قبل Jianhao Chen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon scattering[4-6] is indeed independent of n, and places an intrinsic limit on the resistivity in graphene of only 30 Ohm at room temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2, the mean free path for electron-acoustic phonon scattering is >2 microns, and the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by surface phonons of the SiO2 substrate[11,12] adds a strong temperature dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4 cm^2/Vs, pointing out the importance of substrate choice for graphene devices[13].



قيم البحث

اقرأ أيضاً

We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e. a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution STM image s reveal the presence of a strong spatially dependent perturbation, which breaks the hexagonal lattice symmetry of the graphitic lattice. Structural corrugations of the graphene sheet partially conform to the underlying silicon oxide substrate. These effects are obscured or modified on graphene devices processed with normal lithographic methods, as they are covered with a layer of photoresist residue. We enable our experiments by a novel cleaning process to produce atomically-clean graphene sheets.
120 - N. Kumada , P. Roulleau , B. Roche 2014
We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.
We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates [1]; increased dielectric screening reduces scattering from charged impurities, but increases scattering from short-range scatterers [2]. We evaluate the effects of the corrugations (ripples) of graphene on SiO2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering [3, 4]. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity linear in temperature and independent of carrier density [5]; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity [5]. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime.
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4- 25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
155 - C. Stampfer , L. Wirtz , A. Jungen 2007
We present spatially resolved Raman images of the G and 2D lines of single-layer graphene flakes. The spatial fluctuations of G and 2D lines are correlated and are thus shown to be affiliated with local doping domains. We investigate the position of the 2D line -- the most significant Raman peak to identify single-layer graphene -- as a function of charging up to |n|~4 10^12 cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening with respect to electron and hole-doping, the 2D line shows a weak and slightly asymmetric stiffening for low doping. Additionally, the line width of the 2D line is, in contrast to the G line, doping-independent making this quantity a reliable measure for identifying single-layer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا