ﻻ يوجد ملخص باللغة العربية
We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.
We have observed propagation of Edge Magneto-Plasmon (EMP) modes in graphene in the Quantum Hall regime by performing picosecond time of flight measurements between narrow contacts on the perimeter of micrometric exfoliated graphene. We find the prop
It is known that peculiar plasmons whose frequencies are purely imaginary exist in the interior of a two-dimensional electronic system described by the Drude model. We show that when an external magnetic field is applied to the system, these bulk pla
We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral pro
We investigate a way to suppress high-frequency coupling between a gate and low-dimensional electron systems in the gigahertz range by measuring the velocity of edge magnetoplasmons (EMPs) in InAs quantum Hall systems.We compare the EMPvelocity in th
The interface between graphene and the ferroelectric superlattice $mathrm{PbTiO_3/SrTiO_3}$ (PTO/STO) is studied. Tuning the transition temperature through the PTO/STO volume fraction minimizes the adsorbates at the graphene-ferroelectric interface,