ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron production in non linear relativistic mean field models

130   0   0.0 ( 0 )
 نشر من قبل Marcelo Chiapparini Dr.
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By using a parametrization of the non-linear Walecka model which takes into account the binding energy of different hyperons, we present a study of particle production yields measured in central Au-Au collision at RHIC. Two sets of different hyperon-meson coupling constants are employed in obtaining the hadron production and chemical freeze-out parameters. These quantities show a weak dependence on the used hyperon-meson couplings. Results are in good overall accordance with experimental data. We have found that the repulsion among the baryons is quite small and, through a preliminary analysis of the effective mesonic masses, we suggest a way to improve the fittings.


قيم البحث

اقرأ أيضاً

We study the hadron production in $p+p$, $p+n$ and $n+n$ reactions within the microscopic Parton-Hadron-Dynamics (PHSD) transport approach in comparison to PYTHIA 8.2. We discuss the details of the PHSD tune of the Lund string model (realized by even t generators FRITIOF and PYTHIA) in the vacuum (as in $N+N$ collisions) as well as its in-medium modifications relevant for heavy-ion collisions where a hot and dense matter is produced. We compare the results of PHSD and PYTHIA 8.2 (default version) for the excitation function of hadron multiplicities as well as differential rapidity $y$, transverse momentum $p_T$ and $x_F$ distributions in $p+p$, $p+n$ and $n+n$ reactions with the existing experimental data in the energy range $sqrt{s_{NN}} = 2.7 - 7000$ GeV. We discuss the production mechanisms of hadrons and the role of final state interactions (FSI) due to the hadronic rescattering. We also show the influence of the possible quark-gluon plasma (QGP) formation on hadronic observables in $p+p$ collisions at LHC energies. We stress the importance of developing a reliable event generator for elementary reactions from low to ultra-relativistic energies in view of actual and upcoming heavy-ion experiments.
Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed $263$ parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed $240$ Skyrme parameterizations. The results pointed to $2$ models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updat
Based on relativistic mean field (RMF) models, we study finite $Lambda$-hypernuclei and massive neutron stars. The effective $N$-$N$ interactions PK1 and TM1 are adopted, while the $N$-$Lambda$ interactions are constrained by reproducing the binding energy of $Lambda$-hyperon at $1s$ orbit of $^{40}_{Lambda}$Ca. It is found that the $Lambda$-meson couplings follow a simple relation, indicating a fixed $Lambda$ potential well for symmetric nuclear matter at saturation densities, i.e., around $V_{Lambda} = -29.786$ MeV. With those interactions, a large mass range of $Lambda$-hypernuclei can be well described. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the $Lambda$-meson couplings $g_{sigmaLambda}/g_{sigma N}gtrsim 0.73$, $g_{omegaLambda}/g_{omega N}gtrsim 0.80$ for PK1 and $g_{sigmaLambda}/g_{sigma N}gtrsim 0.81$, $g_{omegaLambda}/g_{omega N}gtrsim 0.90$ for TM1, respectively. This resolves the Hyperon Puzzle without introducing any additional degrees of freedom.
We analyze the localization properties of two-body correlations induced by pairing in the framework of relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing tensor in coordinate space and fo r the Cooper pair wave function. The calculations are performed both with Relativistic-Hatree-Bogoliubov (RHB) and RMF+Projected-BCS (PBCS) models and taking as examples the nuclei $^{66}$Ni, $^{124}$Sn and $^{200}$Pb. It is shown that the coherence length have the same pattern as in previous non-relativistic HFB calculations, i.e., it is maximum in the interior of the nucleus and drops to a minimum in the surface region. In the framework of RMF+PBCS we have also analysed, for the particular case of $^{120}$Sn, the dependence of the coherence length on the intensity of the pairing force. This analysis indicates that pairing is reducing the coherence length by about 25-30 $%$ compared to the RMF limit.
Recent data on the production of $D$ mesons and $Lambda_c^+$ baryons in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider exhibit a number of striking characteristics such as enhanced yield ratios $D_s^+/D^0$, $Lambda_c^+/D^0$ and their transverse momentum dependences. In this paper, we derive the momentum dependence of open charm mesons and singly charmed baryons produced in ultra-relativistic heavy ion collisions via the equal-velocity quark combination. We present analytic expressions and numerical results of yield ratios and compare them with the experimental data available. We make predictions for other charmed hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا