ﻻ يوجد ملخص باللغة العربية
A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy between symmetric two-mode Gaussian states is the diagonalization of their covariance matrices under the same beam-splitter transformation. The multiplicativity property of the Uhlmann fidelity and the additivity of the relative entropy allow one to finally deal with a single-mode optimization problem in both cases. We find that only the Bures-distance Gaussian entanglement is consistent with the exact entanglement of formation.
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine pr
We evaluate a Gaussian entanglement measure for a symmetric two-mode Gaussian state of the quantum electromagnetic field in terms of its Bures distance to the set of all separable Gaussian states. The required minimization procedure was considerably
We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states (where initial single mode compression is $z_0$) provided the
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II O
Singularity or negativity of Glauber P-function is a widespread notion of nonclassicality, with important implications in quantum optics and with the character of an irreducible resource. Here we explore how P-nonclassicality may be generated by cond