ترغب بنشر مسار تعليمي؟ اضغط هنا

Field dependence of magnetic correlations through the polarization flop transition in multiferroic TbMnO3 : evidence for a magnetic memory effect

73   0   0.0 ( 0 )
 نشر من قبل Daniel Senff
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The field-induced multiferroic transition in TbMnO3 has been studied by neutron scattering. Apart strong hysteresis, the magnetic transition associated with the flop of electronic polarization exhibits a memory effect: after a field sweep, TbMnO3 does not exhibit the same phase as that obtained by zero-field cooling. The strong changes in the magnetic excitations across the transition perfectly agree with a rotation of the cycloidal spiral plane indicating that the inverse Dzyaloshinski-Moriya coupling causes the giant magnetoelectric effect at the field-induced transition. The analysis of the zone-center magnetic excitations identifies the electromagnon of the multiferroic high-field phase.

قيم البحث

اقرأ أيضاً

81 - D. Senff , P. Link , K. Hradil 2006
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose cha racter has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5meV-mode is in perfect agreement with recent infra-red-spectroscopy data giving strong support to its interpretation as an hybridized phonon-magnon excitation.
Ferroelectric spiral magnets DyMnO3 and TbMnO3 show similar behavior of electric polarization in applied magnetic fields. Studies of the field dependence of lattice modulations on the contrary show a completely different picture. Whereas in TbMnO3 th e polarization flop from P||c to P||a is accompanied by a sudden change from incommensurate to commensurate wave vector modulation, in DyMnO3 the wave vector varies continuously through the flop transition. This smooth behavior may be related to the giant magnetocapacitive effect observed in DyMnO3.
We have studied the impact of the magnetic field on the electromagnon excitations in TbMnO3 crystal. Applying magnetic field along the c axis, we show that the electromagnons transform into pure antiferromagnetic modes, losing their polar character. Entering in the paraelectric phase, we are able to track the spectral weight transfer from the electromagnons to the magnon excitations and we discuss the magnetic excitations underlying the electromagnons. We also point out the phonons involved in the phase transition process. This reveals that the Mn-O distance plays a key role in understanding the ferroelectricity and the polar character of the electromagnons. Magnetic field measurements along the b axis allow us to detect a new electromagnon resonance in agreement with a Heisenberg model.
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low tempe ratures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.
Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T_N(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا