ﻻ يوجد ملخص باللغة العربية
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5meV-mode is in perfect agreement with recent infra-red-spectroscopy data giving strong support to its interpretation as an hybridized phonon-magnon excitation.
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low tempe
Magneto-electric multiferroics exemplified by TbMnO3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to
In order to clarify the mechanism associated with pressure/magnetic-field-induced giant ferroelectric polarization in TbMnO3, this work investigated changes in magnetic ordering brought about by variations in temperature, magnetic field, and pressure
We have used in-field neutron and X-ray single crystal diffraction to measure the incommensurability δ of the crystal and magnetic structure of multiferroic TbMnO3 . We show that the flop in the electric polarization at the critical field HC, fo
We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5D2O in the zero-field incommensurate cycloidal phase and the high-field quasi-collinear phase. The spontaneous electric polariz