ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnification Probability Distribution Functions of Standard Candles in a Clumpy Universe

22   0   0.0 ( 0 )
 نشر من قبل Chul-Moon Yoo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lensing effects on light rays from point light sources, such like Type Ia supernovae, are simulated in a clumpy universe model. In our universe model, it is assumed that all matter in the universe takes the form of randomly distributed objects each of which has finite size and is transparent for light rays. Monte-Carlo simulations are performed for several lens models, and we compute probability distribution functions of magnification. In the case of the lens models that have a smooth density profile or the same degree of density concentration as the spherical NFW (Navarro-Frenk-White) lens model at the center, the so-called gamma distributions fit well the magnification probability distribution functions if the size of lenses is sufficiently larger than the Einstein radius. In contrast, the gamma distributions do not fit the magnification probability distribution functions in the case of the SIS (Singular Isothermal Sphere) lens model. We find, by using the power law cusp model, that the magnification probability distribution function is fitted well using the gamma distribution only when the slope of the central density profile is not very steep. These results suggest that we may obtain information about the slope of the central density profiles of dark matter halo from the lensing effect of Type Ia supernovae.

قيم البحث

اقرأ أيضاً

Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as standard candles providing an excellent probe of cosmic distances up to $z <0.1$ and thus complementing other indicators of cosmological distance ladder.
We investigate the effect of small scale inhomogeneities on standard candle observations, such as type Ia supernovae (SNe) observations. Existence of the small scale inhomogeneities may cause a tension between SNe observations and other observations with larger diameter sources, such as the cosmic microwave background (CMB) observation. To clarify the impact of the small scale inhomogeneities, we use the Dyer-Roeder approach. We determined the smoothness parameter $alpha(z)$ as a function of the redshift $z$ so as to compensate the deviation of cosmological parameters for SNe from those for CMB. The range of the deviation which can be compensated by the smoothness parameter $alpha(z)$ satisfying $0leqalpha(z)leq1$ is reported. Our result suggests that the tension may give us the information of the small scale inhomogeneities through the smoothness parameter.
For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growt h factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified, or interact directly. We show that for current SNe data, the linear growth factor at z = 0.3 can be constrained to 5%, and the linear growth rate to 6%. With future SNe data, such as expected from the JDEM mission, we may be able to constrain the growth factor to 2-3% and the growth rate to 3-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future BAO data which would deliver measurements of both the angular diameter distance and Hubble parameter, it should be possible to constrain the growth factor at z = 2.5 to 9%. These constraints grow tighter with the errors on the datasets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.
Soon the number of type Ia supernova (SN) measurements should exceed 100,000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a so urce of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude sigma8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on sigma8 of 7% (3%) for a catalog of 100,000 (500,000) SNe of average magnitude error 0.12 without having to assume that such intrinsic dispersion is known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the dataset (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on CMB, cosmic shear or cluster abundance observables.
A decomposed generalised Chaplygin gas (gCg) with energy flux from dark energy to dark matter, represented by a negative value for the gas parameter $alpha$, is shown to alleviate the tension between EDGES data and the cosmological standard model. Us ing EDGES data and employing a Bayesian statistical analysis, the agreement with the standard model is only marginal. However, if $alpha$ is negative enough the gCg fits remarkably well the data, even in combination with SNe Ia datasets. On the other hand, when the CMB and BAO acoustic scales are included the preferred value for $alpha$ is near zero, implying that a small deviation from $Lambda$CDM is predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا