ﻻ يوجد ملخص باللغة العربية
Soon the number of type Ia supernova (SN) measurements should exceed 100,000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude sigma8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on sigma8 of 7% (3%) for a catalog of 100,000 (500,000) SNe of average magnitude error 0.12 without having to assume that such intrinsic dispersion is known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the dataset (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on CMB, cosmic shear or cluster abundance observables.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu
We study the feasibility of detecting weak lensing spatial correlations between Supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-corre
We revisit the observed correlation between Hbeta and FeII velocities for Type II-P supernovae (SNe~II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km/s. Using
Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as standard candles providing an excellent probe
We investigate the effect of small scale inhomogeneities on standard candle observations, such as type Ia supernovae (SNe) observations. Existence of the small scale inhomogeneities may cause a tension between SNe observations and other observations