ترغب بنشر مسار تعليمي؟ اضغط هنا

Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model

46   0   0.0 ( 0 )
 نشر من قبل Andres Moya
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to make astroseismology a powerful tool to explore stellar interiors, different numerical codes should give the same oscillation frequencies for the same input physics. This work is devoted to test, compare and, if needed, optimize the seismic codes used to calculate the eigenfrequencies to be finally compared with observations. The oscillation codes of nine research groups in the field have been used in this study. The same physics has been imposed for all the codes in order to isolate the non-physical dependence of any possible difference. Two equilibrium models with different grids, 2172 and 4042 mesh points, have been used, and the latter model includes an explicit modelling of semiconvection just outside the convective core. Comparing the results for these two models illustrates the effect of the number of mesh points and their distribution in particularly critical parts of the model, such as the steep composition gradient outside the convective core. A comprehensive study of the frequency differences found for the different codes is given as well. These differences are mainly due to the use of different numerical integration schemes. The use of a second-order integration scheme plus a Richardson extrapolation provides similar results to a fourth-order integration scheme. The proper numerical description of the Brunt-Vaisala frequency in the equilibrium model is also critical for some modes. An unexpected result of this study is the high sensitivity of the frequency differences to the inconsistent use of values of the gravitational constant (G) in the oscillation codes, within the range of the experimentally determined ones, which differ from the value used to compute the equilibrium model.

قيم البحث

اقرأ أيضاً

32 - R. Samadi 2002
The excitation rate P of solar p-modes is computed with a model of stochatic excitation which involves constraints on the averaged properties of the solar turbulence. These constraints are obtained from a 3D simulation. Resulting values for P are fou nd ~9 times larger than when the calculation assumes properties of turbulent convection which are derived from an 1D solar model based on Gough (1977)s formulation of the mixing-length theory (GMLT). This difference is mainly due to the assumed values for the mean anisotropy of the velocity field in each case.Calculations based on 3D constraints bring the P maximum closer to the observational one.We also compute P for several models of intermediate mass stars (1Mo < M < 2Mo). Differences in the values of P_max between models computed with the classical mixing-length theory and GMLT models are found large enough for main sequence stars to suggest that measurements of P in this mass range will be able to discriminate between different models of turbulent convection.
61 - Janos Zsargo 2021
We present a database of 45,000 atmospheric models (which will become 80,000 models by the end of the project) with stellar masses between 9 and 120 M$_{odot}$, covering the region of the OB main sequence and W-R stars in the H-R diagram. The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN. The parameter space has 6 dimensions: the effective temperature $T_{rm eff}$, the luminosity $L$, the metallicity $Z$, and three stellar wind parameters, namely the exponent $beta$, the terminal velocity $V_{infty}$, and the volume filling factor $F_{cl}$. For each model, we also calculate synthetic spectra in the UV (900-2000 Angstroms), optical (3500-7000 Angstroms), and near IR (10000-30000 Angstroms) regions. To facilitate comparison with observations, the synthetic spectra were rotationally broaden using ROTIN3, by covering $v$ sin $i$ velocities between 10 and 350 km/s with steps of 10 km/s, resulting in a library of 1 575 000 synthetic spectra. In order to demonstrate the benefits of employing the databases of pre-calculated models, we also present the results of the re-analysis of $epsilon$ Ori by using our grid.
Three- and five-minute oscillations of sunspots have different spatial distributions in the solar atmospheric layers. The spatial distributions are crucial to reveal the physical origin of sunspot oscillations and to investigate their propagation. In this study, six sunspots observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly were used to obtain the spatial distributions of three- and five-minute oscillations. The fast Fourier transform method is applied to represent the power spectra of oscillation modes. We find that, from the temperature minimum to the lower corona, the powers of the five-minute oscillation exhibit a circle-shape distribution around its umbra, and the shapes gradually expand with temperature increase. However, the circle-shape is disappeared and the powers of the oscillations appear to be very disordered in the higher corona. This indicates that the five-minute oscillation can be suppressed in the high-temperature region. For the three-minute oscillations, from the temperature minimum to the high corona, their powers mostly distribute within an umbra, and part of them locate at the coronal fan loop structures. Moreover, those relative higher powers are mostly concentrated in the position of coronal loop footpoints.
Strong magnetic fields in chemically peculiar A-type (Ap) stars typically suppress low-overtone pressure modes (p modes) but allow high-overtone p modes to be driven. KIC 11296437 is the first star to show both. We obtained and analysed a Subaru spec trum, from which we show that KIC 11296437 has abundances similar to other magnetic Ap stars, and we estimate a mean magnetic field modulus of $2.8pm0.5$ kG. The same spectrum rules out a double-lined spectroscopic binary, and we use other techniques to rule out binarity over a wide parameter space, so the two pulsation types originate in one $delta$ Sct--roAp hybrid pulsator. We construct stellar models depleted in helium and demonstrate that helium settling is second to magnetic damping in suppressing low-overtone p modes in Ap stars. We compute the magnetic damping effect for selected p and g modes, and find that modes with frequencies similar to the fundamental mode are driven for polar field strengths $lesssim4$ kG, while other low-overtone p modes are driven for polar field strengths up to $sim$1.5 kG. We find that the high-order g modes commonly observed in $gamma$ Dor stars are heavily damped by polar fields stronger than 1--4 kG, with the damping being stronger for higher radial orders. We therefore explain the observation that no magnetic Ap stars have been observed as $gamma$ Dor stars. We use our helium-depleted models to calculate the $delta$ Sct instability strip for metallic-lined A (Am) stars, and find that driving from a Rosseland mean opacity bump at $sim$$5times10^4$ K caused by the discontinuous H-ionization edge in bound-free opacity explains the observation of $delta$ Sct pulsations in Am stars.
59 - W. M. Yang , S. L. Bi 2007
Aims. The purpose of this work is to investigate a new frequency separation of stellar p-modes and its characteristics. Methods. Frequency separations are deduced from the asymptotic formula of stellar p-modes. Then, using the theoretical adiabatic f requencies of stellar model, we compute the frequency separations. Results. A new separation $sigma_{l-1 l+1}(n)$, which is similar to the scaled small separation $d_{l l+2}(n)/(2l+3)$, is obtained from the asymptotic formula of stellar p-modes. The separations $sigma_{l-1 l+1}(n)$ and $d_{l l+2}(n)/(2l+3)$ have the same order. And like the small separation, $sigma_{l-1 l+1}(n)$ is mainly sensitive to the conditions in the stellar core. However, with the decrease of the central hydrogen abundance of stars, the $sigma_{02}$ and $sigma_{13}$ more and more deviate from the scaled small separation. This characteristic could be used to extract the information on the central hydrogen abundance of stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا