ترغب بنشر مسار تعليمي؟ اضغط هنا

Polar Kerr Effect Measurements of YBa2Cu3O6+x: Evidence for Broken Symmetry Near the Pseudogap Temperature

118   0   0.0 ( 0 )
 نشر من قبل Jing Xia Mr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar Kerr effect in the high-Tc superconductor YBCO was measured at zero magnetic field with high precision using a cyogenic Sagnac fiber interferometer. We observed non-zero Kerr rotations of order $sim 1 mu$rad appearing near the pseudogap temperature $T^*$, and marking what appears to be a true phase transition. Anomalous magnetic behavior in magnetic-field training of the effect suggests that time reversal symmetry is already broken above room temperature.

قيم البحث

اقرأ أيضاً

We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse t of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule i s obeyed in both materials. However, the energy scale omega_c required to recover the full strength of the superfluid rho_s in the two materials is dramatically different; omega_c simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2Delta_0), but omega_c gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, Gamma < 2Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.
Recent theoretical work predicted emergence of chiral topological superconducting phase with spontaneously broken time reversal symmetry in a twisted bilayer composed of two high-$T_c$ cuprate monolayers, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. He re we identify large intrinsic Hall response that can be probed through the polar Kerr effect measurement as a convenient signature of the $mathcal{T}$-broken phase. Our modelling predicts the Kerr angle $theta_K$ to be in the range of 10-100 $mu$rad, which is a factor of $10^3-10^4$ times larger than what is expected for the leading chiral supercondutor candidate Sr$_2$RuO$_4$. In addition we show that the optical Hall conductivity $sigma_H(omega)$ can be used to distinguish between the topological $d_{x^2-y^2}pm id_{xy}$ phase and the $d_{x^2-y^2}pm is$ phase which is also expected to be present in the phase diagram but is topologically trivial.
Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space densit y. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulations of the charge density, consistent with our original conclusions.
Recent experimental and theoretical interest in the superconducting phase of the heavy fermion material URu$_2$Si$_2$ has led to a number of proposals in which the superconducting order parameter breaks time-reversal symmetry (TRS). In this study we measured polar Kerr effect (PKE) as a function of temperature for several high-quality single crystals of URu$_2$Si$_2$. We find an onset of PKE below the superconducting transition that is consistent with a TRS-breaking order parameter. This effect appears to be independent of an additional, possibly extrinsic, PKE generated above the hidden order transition at $T_{HO}=17.5$ K, and contains structure below $T_c$ suggestive of additional physics within the superconducting state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا