ترغب بنشر مسار تعليمي؟ اضغط هنا

Lateral electron tunneling through single self-assembled InAs quantum dots coupled to superconducting nanogap electrodes

89   0   0.0 ( 0 )
 نشر من قبل Kenji Shibata
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fabricated superconductor-quantum dot-superconductor (SC-QD-SC) junctions by using SC aluminum electrodes with narrow gaps laterally contacting a single self-assembled InAs QD. The fabricated junctions exhibited clear Coulomb staircases and Coulomb oscillations at 40 mK. Furthermore, clear suppression in conductance was observed for the source-drain voltage $|V_{rm SD}| < 2Delta/e$, where $Delta$ is the SC energy gap of Al. The absence of Josephson current that flows through QDs is due to the strong Coulomb interaction and non-negligible thermal fluctuation in our measurement system.

قيم البحث

اقرأ أيضاً

Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots , leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi dence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.
81 - Jie Sun , Ruoyuan Li , Chang Zhao 2007
Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. Resonant tunneling current is superimposed on the thermal current, and they make up the total electron transport in devices. Steps in cu rrent-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77K or 300K, and this is the first time that resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect.
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q D for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا