ﻻ يوجد ملخص باللغة العربية
Starting from a sequence of independent Wright-Fisher diffusion processes on $[0,1]$, we construct a class of reversible infinite dimensional diffusion processes on $DD_infty:= {{bf x}in [0,1]^N: sum_{ige 1} x_i=1}$ with GEM distribution as the reversible measure. Log-Sobolev inequalities are established for these diffusions, which lead to the exponential convergence to the corresponding reversible measures in the entropy. Extensions are made to a class of measure-valued processes over an abstract space $S$. This provides a reasonable alternative to the Fleming-Viot process which does not satisfy the log-Sobolev inequality when $S$ is infinite as observed by W. Stannat cite{S}.
We establish the existence of solutions to a class of non-linear stochastic differential equation of reaction-diffusion type in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. The solution obtained is the sca
In this paper, we derive a simple drift condition for the stability of a class of two-dimensional Markov processes, for which one of the coordinates (also referred to as the {em phase} for convenience) has a well understood behaviour dependent on the
We present a central limit theorem for stationary random fields that are short-range dependent and asymptotically independent. As an application, we present a central limit theorem for an infinite family of interacting It^o-type diffusion processes.
We present new conditions on the drift of the Morrey type with mixed norms allowing us to obtain Aleksandrov type estimates of potentials of time inhomogeneous diffusion processes in spaces with mixed norms and, for instance, in $L_{d_{0}+1}$ with $d_{0}<d$.
The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability... The usual procedure is to use discretiza-tion schemes which unf