ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Investigation of the Charge Ordering Pattern in the Organic Spin Ladder Candidate (DTTTF)2Cu(mnt)2

265   0   0.0 ( 0 )
 نشر من قبل S. Brown
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the variable temperature infrared response of the spin ladder candidate (DTTTF)2Cu(mnt)2 in order to distinguish between two competing ladder models, rectangular versus zigzag, proposed for this family of materials. The distortion along the stack direction below 235 K is consistent with a doubling along b through the metal-insulator transition. While this would agree with either of the ladder models, the concomitant transverse distortion rules out the rectangular ladder model and supports the zigzag scenario. Intramolecular distortions within the DTTTF building block molecule also give rise to on-site charge asymmetry.

قيم البحث

اقرأ أيضاً

The crystal structure and the magnetism of BaMn$_2$O$_3$ have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn$_2$O$_3$ is a realization of a $S = 5/2$ spin ladder as the magnetic interaction i s dominant along 180$^circ$ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn$_2$O$_3$. The susceptibility and powder neutron diffraction data, however, show that BaMn$_2$O$_3$ exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.
271 - B. Koteswararao 2007
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. W e present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.
Triangular lattice quasi-two-dimensional Mott insulators based on BEDT-TTF molecule and its analogies present the largest group of spin liquid candidates on triangular lattice. It was shown theoretically that spin liquid state in these materials can arize from a coupling to the fluctuating charge degree of freedom. In this work we discuss magnetic properties of one of such materials, $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl, which is known to be at the border of the phase transition from Mott insulator into a charge ordered state, and demonstrates charge order properties in the temperature range from 30 to 15~K. Our magnetic susceptibility and cantilever magnetisation measurements demonstrate an absence of spin order in this material down to 120~mK. We present arguments demonstrating that the charge order melting at low temperatures prevents ordering of spins.
An inductive method is used to follow the magnetic field-dependent susceptibility of the coupled charge density wave (CDW) and spin-Peierls (SP) ordered state behavior in the dual chain organic conductor Perylene$_2$[Pt(mnt)$_2$]. In addition to the coexisting SP-CDW state phase below 8 K and 20 T, the measurements show that a second spin-gapped phase appears above 20 T that coincides with a field-induced insulating phase. The results support a strong coupling of the CDW and SP order parameters even in high magnetic fields, and provide new insight into the nature of the magnetic susceptibility of dual-chain spin and charge systems.
Using a combination of Density Functional Theory, mean-field analysis and exact diagonalization calculations we reveal the emergence of a dimerized charge ordered state in TMTTF$_2$-PF$_6$ organic crystal. The interplay between charge and spin order leads to a rich phase diagram. Coexistence of charge ordering with a structural dimerization results in a ferroelectric phase, which has been observed experimentally. The tendency to the dimerization is magnetically driven revealing TMTTF$_2$-PF$_6$ as a multiferroic material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا