ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration

119   0   0.0 ( 0 )
 نشر من قبل Thomas Lorenz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The crystal structure and the magnetism of BaMn$_2$O$_3$ have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn$_2$O$_3$ is a realization of a $S = 5/2$ spin ladder as the magnetic interaction is dominant along 180$^circ$ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn$_2$O$_3$. The susceptibility and powder neutron diffraction data, however, show that BaMn$_2$O$_3$ exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.

قيم البحث

اقرأ أيضاً

We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy and linewidth of the magnon resonance in IPA-Cu(Cl$_{0.95}$Br$_{0.05}$)$_3$, a model spin-1/2 ladder antiferromagnet where Br substitution induces bond randomness. We find that the bond defects induce a blueshift, $delta Delta$, and broadening, $delta Gamma$, of the magnon gap excitation compared to the pure compound. At temperatures exceeding the energy scale of the inter-ladder exchange interactions, $delta Delta$ and $delta Gamma$ are temperature independent within the experimental error, in agreement with Matthiessens rule according to which magnon-defect scattering yields a temperature independent contribution to the magnon mean free path. Upon cooling, $delta Delta$ and $delta Gamma$ become temperature dependent and saturate at values lower than those observed at higher temperature, consistent with the crossover from one-dimensional to two-dimensional spin correlations with decreasing temperature previously observed in pure IPA-CuCl$_3$. These results indicate limitations in the applicability of Matthiessens rule for magnon scattering in low-dimensional magnets.
Magnetism in the insulating BaFe$_2$Se$_3$ was examined through susceptibility, specific heat, resistivity and neutron diffraction measurements. After formation of a short-range magnetic correlation, a long-range ordering was observed below $T_{rm N} sim 255$ K. The transition is obscured by bulk properties. Magnetic moments ($parallel a$) are arranged to form a Fe$_4$ ferromagnetic unit, and each Fe$_4$ stacks antiferromagnetically. This block magnetism is of the third type among magnetic structures of ferrous materials. The magnetic ordering drives unusually large distortion via magnetoelastic coupling.
95 - B. Nafradi , T.Keller , H. Manaka 2011
We have used a combination of neutron resonant spin-echo and triple-axis spectroscopies to determine the energy, fine structure, and linewidth of the magnon resonance in the model spin-1/2 ladder antiferromagnet IPA-CuCl_3 at temperatures T << Delta_ 0 /k_B, where Delta_0 is the spin gap at T=0. In this low-temperature regime we find that the results deviate substantially from the predictions of the non-linear sigma model proposed as a description of magnon excitations in one-dimensional quantum magnets and attribute these deviations to real-space and spin-space anisotropies in the spin Hamiltonian as well as scattering of magnon excitations from a dilute density of impurities. These effects are generic to experimental realizations of one-dimensional quantum magnets.
73 - Emilio Lorenzo 2014
We report the direct observation by inelastic neutron scattering experiments of a spin triplet of magnetic excitations in the response associated with the ladders in the composite cuprate Sr14Cu24O41. This appears as a peak at q_{Q1D}=pi and energy D elta_1=32.5 meV, and we conjecture that all the triplets making up this conspicuous peak have the same phase and therefore interpret it as the signature of the occurrence of quantum coherence along the ladder direction between entangled spin pairs. From the comparison with previous neutron and x-ray data, we conclude that the temperature evolution of this mode is driven by the crystallization of holes into a charge density wave in the ladder sublattice
282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا