ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the Precursors of Life in External Galaxies

38   0   0.0 ( 0 )
 نشر من قبل Brandon Lawton
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Lawton




اسأل ChatGPT حول البحث

Are the organic molecules crucial for life on Earth abundant in early-epoch galaxies? To address this, we searched for organic molecules in extragalactic sources via their absorption features, known as diffuse interstellar bands (DIBs). There is strong evidence that DIBs are associated with polycyclic aromatic hydrocarbons (PAHs) and carbon chains. Galaxies with a preponderance of DIBs may be the most likely places in which to expect life. We use the method of quasar absorption lines to probe intervening early-epoch galaxies for the DIBs. We present the equivalent width measurements of DIBs in one neutral hydrogen (HI) abundant galaxy and limits for five DIB bands in six other HI-rich galaxies (damped Lyman-alpha systems--DLAs). Our results reveal that HI-rich galaxies are dust poor and have significantly lower reddening than known DIB-rich Milky Way environments. We find that DIBs in HI-rich galaxies do not show the same correlation with hydrogen abundance as observed in the Milky Way; the extragalactic DIBs are underabundant by as much as 10 times. The lower limit gas-to-dust ratios of four of the HI-rich early epoch galaxies are much higher than the gas-to-dust ratios found in the Milky Way. Our results suggest that the organic molecules responsible for the DIBs are underabundant in HI-rich early epoch galaxies relative to the Milky Way.

قيم البحث

اقرأ أيضاً

The study of origins of life on Earth and the search for life on other planets are closely linked. Prebiotic chemical scenarios can help prioritize planets as targets for the search for life as we know it and can provide informative priors to help us assess the likelihood that particular spectroscopic features are evidence of life. The prerequisites for origins scenarios themselves predict spectral signatures. The interplay between origins research and the search for extraterrestrial life must start with lab work guiding exploratory ventures in the solar system, and the discoveries in the solar system informing future exoplanet observations and laboratory research. Subsequent exoplanet research will in turn provide statistical context to conclusions about the nature and origins of life.
Exoplanetary systems are prime targets for the Search for Extraterrestrial Intelligence (SETI). With the recent uptick in the identification of candidate and confirmed exoplanets through the work of missions like the Transiting Exoplanet Survey Satel lite (TESS), we are beginning to understand that Earth-like planets are common. In this work, we extend the Breakthrough Listen (BL) search for extraterrestrial intelligence to include targeted searches of stars identified by TESS as potential exoplanet hosts. We report on 113 30-min cadence observations collected for 28 targets selected from the TESS Input Catalog (TIC) from among those identified as containing signatures of transiting planets. The targets were searched for narrowband signals from 1-11 GHz using the turboSETI pipeline architecture modified for compatibility with the Google Cloud environment. Data were searched for drift rates of +/-4 Hz/s above a minimum signal-to-noise threshold of 10, following the parameters of previous searches conducted by Price et al. (2020) and Enriquez et al. (2017). The observations presented in this work establish some of the deepest limits to date over such a wide band (1-11 GHz) for life beyond Earth. We determine that fewer than 12.72% of the observed targets possess transmitters operating at these frequencies with an Equivalent Isotropic Radiated Power (EIRP) greater than our derived threshold of 4.9*10^(14) W.
Boyajian s Star (KIC 8462852) has received significant attention due to its unusual periodic brightness fluctuations detected by the Kepler Spacecraft and subsequent ground based observations. Possible explanations for the dips in the photometric mea surements include interstellar or circumstellar dust, and it has been speculated that an artificial megastructure could be responsible. We analyze 177 high-resolution spectra of Boyajians Star in an effort to detect potential laser signals from extraterrestrial civilizations. The spectra were obtained by the Lick Observatorys Automated Planet Finder telescope as part of the Breakthrough Listen Project, and cover the wavelength range of visible light from 374 to 970 nm. We calculate that the APF would be capable of detecting lasers of power greater than approximately 24 MW at the distance of Boyajians Star, d = 1470 ly. The top candidates from the analysis can all be explained as either cosmic ray hits, stellar emission lines or atmospheric air glow emission lines.
31 - S. G. Bhargavi 2003
Gamma Ray Bursts (GRBs) are expected to leave behind GRB remnants, similar to how ``standard supernovae (SN) leave behind SN remnants. The identification of these remnants in our own and in nearby galaxies would allow a much closer look at GRB birth sites, and possibly lead to the discovery of the compact object left behind. It would also provide independent constraints on GRB rates and energetics. We have initiated an observational program to search for GRB remnants in nearby galaxies. The identification is based on specific line ratios, such as OIII/$H_{beta}$ and HeII/$H_{beta}$, which are expected to be unusually high in case of GRB remnants according to the theoretical predictions of Perna et al. (2000). The observing strategies and preliminary studies from a test run at 2.34 m VBT as well as archival data from planetary nebulae surveys of spiral galaxies are discussed.
Coarse-graining atomic displacements in a solid produces both local affine strains and non-affine fluctuations. Here we study the equilibrium dynamics of these coarse grained quantities to obtain space-time dependent correlation functions. We show ho w a subset of these thermally excited, non-affine fluctuations act as precursors for the nucleation of lattice defects and suggest how defect probabilities may be altered by an {it experimentally realisable} external field conjugate to the global non-affinity parameter. Our results are amenable to verification in experiments on colloidal crystals using commonly available holographic laser tweezer and video microscopy techniques, and may lead to simple ways of controlling the defect density of a colloidal solid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا