ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for GRB remnants in nearby galaxies

32   0   0.0 ( 0 )
 نشر من قبل Bhargavi Sg Mrs
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. G. Bhargavi




اسأل ChatGPT حول البحث

Gamma Ray Bursts (GRBs) are expected to leave behind GRB remnants, similar to how ``standard supernovae (SN) leave behind SN remnants. The identification of these remnants in our own and in nearby galaxies would allow a much closer look at GRB birth sites, and possibly lead to the discovery of the compact object left behind. It would also provide independent constraints on GRB rates and energetics. We have initiated an observational program to search for GRB remnants in nearby galaxies. The identification is based on specific line ratios, such as OIII/$H_{beta}$ and HeII/$H_{beta}$, which are expected to be unusually high in case of GRB remnants according to the theoretical predictions of Perna et al. (2000). The observing strategies and preliminary studies from a test run at 2.34 m VBT as well as archival data from planetary nebulae surveys of spiral galaxies are discussed.

قيم البحث

اقرأ أيضاً

Many more supernova remnants (SNRs) are now known in external galaxies than in the Milky Way. Most of these SNRs have been identified using narrow-band imaging, separating SNRs from HII regions on the basis of [SII]:H-alpha ratios that are elevated c ompared to HII regions. However, the boundary between SNRs and HII regions is not always distinct, especially at low surface brightness. Here we explore velocity structure as a possible criterion for separating SNRs from HII regions, using a sample of well-studied SNRs in the Large Magellanic Cloud (LMC) as well as a small number of SNRs in the galaxy M83. We find, perhaps not surprisingly, that even at large diameters, SNRs exhibit velocity broadening sufficient to readily distinguish them from HII regions. We thus suggest that the purity of most extragalactic samples would be greatly improved through spectroscopic observations with a velocity resolution of order 50~km/s$.
We present and discuss optical diagnostics of the low redshift (z<0.2) galaxies that are known to have hosted supernovae associated with gamma-ray bursts (GRBs). The three galaxies are all actively starforming sub-luminous (L<L*) galaxies with relati vely low metallicities (Z<Zsun). We find no evidence for substantial internal extinction within any of the galaxies. We derive star formation rates (SFR) based on H-alpha luminosities, as well as specific star formation rates (SFFR, star formation rate per unit luminosity). For GRB 980425 (SN 1998bw) we use photometry of the supernova environment to estimate the mass of the progentitor to > 30 Msun. These three host galaxies have global properties (luminosities, SFR, SSFR, metallicity, colour, reddening) that resemble those of more distant GRB host galaxies. We also compare the host galaxies with a sample of Blue Compact Galaxies (BCGs) in the local universe, and show that these samples have similar properties.
119 - R. C. Gleisinger 2021
How do active galactic nuclei with low optical luminosities produce powerful radio emission? Recent studies of active galactic nuclei with moderate radio and low optical luminosities (Fanaroff & Riley class I, FR I) searching for broad nuclear emissi on lines in polarized light, as predicted by some active galactic nucleus unification models, have found heterogeneous results. These models typically consist of a central engine surrounded by a torus of discrete dusty clouds. These clouds would absorb and scatter optical emission, blocking broad nuclear emission lines, and reradiate in mid-infrared. Some scattered broad-line emission may be observable, depending on geometry, which would be polarized. We present a wide-band infrared spectroscopic analysis of 10 nearby FR I radio galaxies to determine whether there is significant emission from a dusty obscuring structure. We used Markov Chain Monte Carlo algorithms to decompose Spitzer/IRS spectra of our sample. We constrained the wide-band behavior of our models with photometry from the Two Micron All Sky Survey, Spitzer/IRAC, Spitzer/MIPS, and Herschel/SPIRE. We find that one galaxy is best fit by a clumpy torus and three others show some thermal mid-infrared component. This suggests that in those three there is likely some obscuring dust structure that is inconsistent with our torus models and there must be some source of photons heating the dust. We conclude that 40% of our FR I radio galaxies show evidence of obscuring dusty material, possibly some other form of hidden broad-line nucleus, but only 10% favor the clumpy torus model specifically.
Since the early 1990s Gamma Ray Bursts have been accepted to be of extra-galactic origin due to the isotropic distribution observed by BATSE and the redshifts observed via absorption line spectroscopy. Nevertheless, upon further examination at least one case turned out to be of galactic origin. This particular event presented a Fast Rise, Exponential Decay (FRED) structure which leads us to believe that other FRED sources might also be Galactic. This study was set out to estimate the most probable degree of contamination by galactic sources that certain samples of FREDs have. In order to quantify the degree of anisotropy the average dipolar and quadripolar moments of each sample of GRBs with respect to the galactic plane were calculated. This was then compared to the probability distribution of simulated samples comprised of a combination of isotropically generated sources and galactic sources. We observe that the dipolar and quadripolar moments of the selected subsamples of FREDs are found more than two standard deviations outside those of random isotropically generated samples.The most probable degree of contamination by galactic sources for the FRED GRBs of the Swift catalog detected until February 2011 that do not have a known redshift is about 21 out of 77 sources which is roughly equal to 27%. Furthermore we observe, that by removing from this sample those bursts that may have any type of indirect redshift indicator and multiple peaks gives the most probable contamination increases up to 34% (17 out of 49 sources). It is probable that a high degree of contamination by galactic sources occurs among the single peak FREDs observed by Swift.
Late type non-starburst galaxies have been shown to contain X-ray emitting objects, some being ultraluminous X-ray sources. We report on XMM-Newton observations of 11 nearby, late-type galaxies previously observed with the Hubble Space Telescope (HST ) in order to find such objects. We found 18 X-ray sources in or near the optical extent of the galaxies, most being point-like. If associated with the corresponding galaxies, the source luminosities range from $2 times 10^{37}$ erg s$^{-1}$ to $6 times 10^{39}$ erg s$^{-1}$. We found one ultraluminous X-ray source, which is in the galaxy IC 5052, and one source coincident with the galaxy IC 4662 with a blackbody temperature of $0.166 pm 0.015$ keV that could be a quasi-soft source or a quiescent neutron star X-ray binary in the Milky Way. One X-ray source, XMMU J205206.0$-$691316, is extended and coincident with a galaxy cluster visible on an HST image. The X-ray spectrum of the cluster reveals a redshift of $z = 0.25 pm 0.02$ and a temperature of 3.6$pm$0.4 keV. The redshift was mainly determined by a cluster of Fe XXIV lines between the observed energy range $0.8-1.0$ keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا