ﻻ يوجد ملخص باللغة العربية
From a suitable integral representation of the Laplace transform of a positive semi-definite quadratic form of independent real random variables with not necessarily identical densities a univariate integral representation is derived for the cumulative distribution function of the sample variance of i.i.d. random variables with a gamma density, supplementing former formulas of the author. Furthermore, from the above Laplace transform Fourier series are obtained for the density and the distribution function of the sample variance of i.i.d. random variables with a uniform distribution. This distribution can be applied e.g. to a statistical test for a scale parameter.
Several representations of the exact cdf of the sum of squares of n independent gamma-distributed random variables Xi are given, in particular by a series of gamma distribution functions. Using a characterization of the gamma distribution by Laha, an
For a sample of absolutely bounded i.i.d. random variables with a continuous density the cumulative distribution function of the sample variance is represented by a univariate integral over a Fourier series. If the density is a polynomial or a trigon
We derive convenient uniform concentration bounds and finite sample multivariate normal approximation results for quadratic forms, then describe some applications involving variance components estimation in linear random-effects models. Random-effect
In the common nonparametric regression model the problem of testing for a specific parametric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo r
We calculate exactly the Laplace transform of the Fr{e}chet distribution in the form $gamma x^{-(1+gamma)} exp(-x^{-gamma})$, $gamma > 0$, $0 leq x < infty$, for arbitrary rational values of the shape parameter $gamma$, i.e. for $gamma = l/k$ with $l