ﻻ يوجد ملخص باللغة العربية
Optical high-resolution spectra of the R Coronae Borealis star V CrA at light maximum and during minimum light arediscussed. Abundance analysis confirms previous results showing that V CrA has the composition of the small subclass of R Coronae Borealis (RCB) stars know as `minority RCBs, i.e., the Si/Fe and S/Fe ratios are 100 times their solar values. A notable novel result for RCBs is the detection of the 1-0 Swan system $^{12}$C$^{13}$C bandhead indicating that $^{13}$C is abundant: spectrum synthesis shows that $^{12}$C/$^{13}$C is about 3 to 4. Absorption line profiles are variable at maximum light with some lines showing evidence of splitting by about 10 km s$^{-1}$. A spectrum obtained as the star was recovering from a deep minimum shows the presence of cool C$_2$ molecules with a rotational temperature of about 1200K, a temperature suggestive of gas in which carbon is condensing into soot. The presence of rapidly outflowing gas is shown by blue-shifted absorption components of the Na {sc i} D and K {sc i} 7698 AA resonance lines.
High-resolution spectroscopy is a very important tool for studying stellar physics, perhaps, particularly so for such enigmatic objects like the R Coronae Borealis and related Hydrogen deficient stars that produce carbon dust in addition to their pec
Neutral fluorine (F I) lines are identified in the optical spectra of several R Coronae Borealis stars (RCBs) at maximum light. These lines provide the first measurement of the fluorine abundance in these stars. Fluorine is enriched in some RCBs by f
The R CrA region was observed in the 3.5 and 6.2 cm continuum with high angular resolutions (0.6--1.7 arcseconds) using the Very Large Array. Archival data sets were also analyzed for comparison, which provided angular resolutions up to 0.3 arcsecond
Circularly polarized 3.5 cm continuum emission was detected toward three radio sources in the R CrA region using the Very Large Array. The Class I protostar IRS 5b persistently showed polarized radio emission with a constant helicity over 8 yr, which
NSV 11154 has been confirmed as a new member of the rare hydrogen deficient R Coronae Borealis (RCB) stars based on new photometric and spectroscopic data. Using new photometry, as well as archival plates from the Harvard archive, we have constructed