ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluorine in R Coronae Borealis Stars

122   0   0.0 ( 0 )
 نشر من قبل Gajendra Pandey
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutral fluorine (F I) lines are identified in the optical spectra of several R Coronae Borealis stars (RCBs) at maximum light. These lines provide the first measurement of the fluorine abundance in these stars. Fluorine is enriched in some RCBs by factors of 800 to 8000 relative to its likely initial abundance. The overabundances of fluorine are evidence for the synthesis of fluorine. These results are discussed in the light of the scenario that RCBs are formed by accretion of an He white dwarf by a C-O white dwarf. Sakurais object (V4334 Sgr), a final He-shell flash product, shows no detectable F I lines.



قيم البحث

اقرأ أيضاً

Neutral fluorine lines are identified in the optical spectra of several R Coronae Borealis stars (RCBs) at maximum light. These lines provide the first measurement of the fluorine abundance in these stars. Fluorine is enriched in some RCBs by factors of 800 to 8000 relative to its likely initial abundance. The overabundances of fluorine are evidence for the synthesis of fluorine. These results are discussed in the light of the scenario that RCBs are formed by accretion of an He white dwarf by a C-O white dwarf. Sakurais object (V4334 Sgr), a final He-shell flash product, shows no detectable neutral fluorine lines.
141 - Geoffrey C. Clayton 2012
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in th e last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
The R Coronae Borealis (RCB) stars are rare hydrogen--deficient, carbon--rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars res ult from the mergers of CO/He white dwarf (WD) binaries. We constructed post--merger spherically asymmetric models computed with the MESA code, and then followed the evolution into the region of the HR diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He--burning shell. Our MESA modeling consists of engineering the star by adding He--WD material to an initial CO--WD model, and then following the post--merger evolution using a nuclear--reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within MESA. We follow the later evolution beyond the RCB phase to determine the stars likely lifetimes. The relative numbers of known RCB and Extreme Helium (EHe) stars correspond well to the lifetimes predicted from the MESA models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.
122 - N. Kameswara Rao 2007
Some of the observational aspects related to the evolutionary status and dust production in R Cor Bor stars are discussed. Recent work regarding the surface abundances, stellar winds and evidence for dust production in these high luminosty hydrogen d eficient stars are also reviewed. Possibility of the stellar winds being maintained by surface magnetic fields is also considered.
Mid-infrared photometry of R Coronae Borealis stars obtained from various satellites from IRAS to WISE has been utilized in studying the variations of the circumstellar dusts contributions to the spectral energy distribution of these stars. The varia tion of the fractional coverage (R) of dust clouds and their blackbody temperatures (T$_d$) have been used in trying to understand the dust cloud evolution over the three decades spanned by the satellite observations. In particular, it is shown that a prediction R $ propto T_d^4$ developed in this paper is satisfied, especially by those stars for which a single collection of cloud dominates the IR fluxes. Correlations of R with photospheric abundance and luminosity of the stars are explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا