ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent magnetohydrodynamic self-similar extragalactic jets

42   0   0.0 ( 0 )
 نشر من قبل King Hay Tsui
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extragalactic jets are visualized as dynamic erruptive events modelled by time-dependent magnetohydrodynamic (MHD) equations. The jet structure comes through the temporally self-similar solutions in two-dimensional axisymmetric spherical geometry. The two-dimensional magnetic field is solved in the finite plasma pressure regime, or finite $beta$ regime, and it is described by an equation where plasma pressure plays the role of an eigenvalue. This allows a structure of magnetic lobes in space, among which the polar axis lobe is strongly peaked in intensity and collimated in angular spread comparing to the others. For this reason, the polar lobe overwhelmes the other lobes, and a jet structure arises in the polar direction naturally. Furthermore, within each magnetic lobe in space, there are small secondary regions with closed two-dimensional field lines embedded along this primary lobe. In these embedded magnetic toroids, plasma pressure and mass density are much higher accordingly. These are termed as secondary plasmoids. The magnetic field lines in these secondary plasmoids circle in alternating sequence such that adjacent plasmoids have opposite field lines. In particular, along the polar primary lobe, such periodic plasmoid structure happens to be compatible with radio observations where islands of high radio intensities are mapped.

قيم البحث

اقرأ أيضاً

Rotating magnetic structures are common in astrophysics, from vortex tubes and tornados in the Sun all the way to jets in different astrophysical systems. The physics of these objects often combine inertial, magnetic, gas pressure and gravitational t erms. Also, they often show approximate symmetries that help simplify the otherwise rather intractable equations governing their morphology and evolution. Here we propose a general formulation of the equations assuming axisymmetry and a self-similar form for all variables: in spherical coordinates $(r,theta,phi)$, the magnetic field and plasma velocity are taken to be of the form: ${bf B}={bf f}(theta)/r^n$ and ${bf v}={bf g}(theta)/r^m$, with corresponding expressions for the scalar variables like pressure and density. Solutions are obtained for potential, force-free, and non-force-free magnetic configurations. Potential-field solutions can be found for all values of~$n$. Non-potential force-free solutions possess an azimuthal component $B_phi$ and exist only for $nge2$; the resulting structures are twisted and have closed field lines but are not collimated around the system axis. In the non-force free case, including gas pressure, the magnetic field lines acquire an additional curvature to compensate for an outward pointing pressure gradient force. We have also considered a pure rotation situation with no gravity, in the zero-$beta$ limit: the solution has cylindrical geometry and twisted magnetic field lines. The latter solutions can be helpful in producing a collimated magnetic field structure; but they exist only when $n<0$ and $m<0$: for applications they must be matched to an external system at a finite distance from the origin.
The current state of the art in pulsar magnetosphere modeling assumes the force-free limit of magnetospheric plasma. This limit retains only partial information about plasma velocity and neglects plasma inertia and temperature. We carried out time-de pendent 3D relativistic magnetohydrodynamic (MHD) simulations of oblique pulsar magnetospheres that improve upon force-free by retaining the full plasma velocity information and capturing plasma heating in strong current layers. We find rather low levels of magnetospheric dissipation, with less than 10% of pulsar spindown energy dissipated within a few light cylinder radii, and the MHD spindown that is consistent with that in force-free. While oblique magnetospheres are qualitatively similar to the rotating split-monopole force-free solution at large radii, we find substantial quantitative differences with the split-monopole, e.g., the luminosity of the pulsar wind is more equatorially concentrated than the split-monopole at high obliquities, and the flow velocity is modified by the emergence of reconnection flow directed into the current sheet.
144 - Curtis J. Saxton 2010
We investigated the time-dependent radiative and dynamical properties of light supersonic jets launched into an external medium, using hydrodynamic simulations and numerical radiative transfer calculations. These involved various structural models fo r the ambient media, with density profiles appropriate for galactic and extragalactic systems. The radiative transfer formulation took full account of emission, absorption, re-emission, Faraday rotation and Faraday conversion explicitly. High time-resolution intensity maps were generated, frame-by-frame, to track the spatial hydrodynamical and radiative properties of the evolving jets. Intensity light curves were computed via integrating spatially over the emission maps. We apply the models to jets in active galactic nuclei (AGN). From the jet simulations and the time-dependent emission calculations we derived empirical relations for the emission intensity and size for jets at various evolutionary stages. The temporal properties of jet emission are not solely consequences of intrinsic variations in the hydrodynamics and thermal properties of the jet. They also depend on the interaction between the jet and the ambient medium. The interpretation of radio jet morphology therefore needs to take account of environmental factors. Our calculations have also shown that the environmental interactions can affect specific emitting features, such as internal shocks and hotspots. Quantification of the temporal evolution and spatial distribution of these bright features, together with the derived relations between jet size and emission, would enable us to set constraints on the hydrodynamics of AGN and the structure of the ambient medium.
94 - Yosuke Mizuno 2007
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes th e properties of the shock interface between the tenuous, overpressured jet ($V^z_j$) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A ``poloidal magnetic field ($B^z$), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong ``toroidal magnetic field ($B^y$), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Overall, the acceleration efficiency in the ``poloidal case is less than that of the ``toroidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا