ﻻ يوجد ملخص باللغة العربية
We investigate how different models that have been proposed for solving the dark matter problem can fit the velocity dispersion observed around elliptical galaxies, on either a small scale (~ 20kpc) with stellar tracers, such as planetary nebulae, or large scale (~ 200kpc) with satellite galaxies as tracers. Predictions of Newtonian gravity, either containing pure baryonic matter, or embedded in massive cold dark matter (CDM) haloes, are compared with predictions of the modified gravity of MOND. The standard CDM model has problems on a small scale, and the Newtonian pure baryonic model has difficulties on a large scale, while a fit with MOND is possible on both scales.
It has long been thought that normal group-velocity dispersion (GVD) cannot be produced in free space via angular dispersion. Indeed, conventional diffractive or dispersive components such as gratings or prisms produce only anomalous GVD. We identify
We present the results of a weak gravitational lensing analysis to determine whether the stellar mass or the velocity dispersion is more closely related to the amplitude of the lensing signal around galaxies - and hence to the projected distribution
We present Hobby-Eberly Telescope (HET) observations for galaxies at redshift z < 0.3 from the Sloan Digital Sky Survey (SDSS) showing large velocity dispersions while appearing to be single galaxies in HST images. The high signal-to-noise HET spectr
Cosmological perturbation theory for the late Universe dominated by dark matter is extended beyond the perfect fluid approximation by taking the dark matter velocity dispersion tensor as an additional field into account. A proper tensor decomposition
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part o