ترغب بنشر مسار تعليمي؟ اضغط هنا

The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management

155   0   0.0 ( 0 )
 نشر من قبل Xiaolin Luo Dr
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The t copula is often used in risk management as it allows for modelling tail dependence between risks and it is simple to simulate and calibrate. However, the use of a standard t copula is often criticized due to its restriction of having a single parameter for the degrees of freedom (dof) that may limit its capability to model the tail dependence structure in a multivariate case. To overcome this problem, grouped t copula was proposed recently, where risks are grouped a priori in such a way that each group has a standard t copula with its specific dof parameter. In this paper we propose the use of a grouped t copula, where each group consists of one risk factor only, so that a priori grouping is not required. The copula characteristics in the bivariate case are studied. We explain simulation and calibration procedures, including a simulation study on finite sample properties of the maximum likelihood estimators and Kendalls tau approximation. This new copula can be significantly different from the standard t copula in terms of risk measures such as tail dependence, value at risk and expected shortfall. Keywords: grouped t copula, tail dependence, risk management.



قيم البحث

اقرأ أيضاً

577 - Gilles Pag`es 2009
We build a sequence of empirical measures on the space D(R_+,R^d) of R^d-valued c`adl`ag functions on R_+ in order to approximate the law of a stationary R^d-valued Markov and Feller process (X_t). We obtain some general results of convergence of thi s sequence. Then, we apply them to Brownian diffusions and solutions to Levy driven SDEs under some Lyapunov-type stability assumptions. As a numerical application of this work, we show that this procedure gives an efficient way of option pricing in stochastic volatility models.
135 - William T. Shaw 2010
We develop the idea of using Monte Carlo sampling of random portfolios to solve portfolio investment problems. In this first paper we explore the need for more general optimization tools, and consider the means by which constrained random portfolios may be generated. A practical scheme for the long-only fully-invested problem is developed and tested for the classic QP application. The advantage of Monte Carlo methods is that they may be extended to risk functions that are more complicated functions of the return distribution, and that the underlying return distribution may be computed without the classical Gaussian limitations. The optimization of quadratic risk-return functions, VaR, CVaR, may be handled in a similar manner to variability ratios such as Sortino and Omega, or mathematical constructions such as expected utility and its behavioural finance extensions. Robustification is also possible. Grid computing technology is an excellent platform for the development of such computations due to the intrinsically parallel nature of the computation, coupled to the requirement to transmit only small packets of data over the grid. We give some examples deploying GridMathematica, in which various investor risk preferences are optimized with differing multivariate distributions. Good comparisons with established results in Mean-Variance and CVaR optimization are obtained when ``edge-vertex-biased sampling methods are employed to create random portfolios. We also give an application to Omega optimization.
We present a general framework for portfolio risk management in discrete time, based on a replicating martingale. This martingale is learned from a finite sample in a supervised setting. The model learns the features necessary for an effective low-di mensional representation, overcoming the curse of dimensionality common to function approximation in high-dimensional spaces. We show results based on polynomial and neural network bases. Both offer superior results to naive Monte Carlo methods and other existing methods like least-squares Monte Carlo and replicating portfolios.
Latency (i.e., time delay) in electronic markets affects the efficacy of liquidity taking strategies. During the time liquidity takers process information and send marketable limit orders (MLOs) to the exchange, the limit order book (LOB) might under go updates, so there is no guarantee that MLOs are filled. We develop a latency-optimal trading strategy that improves the marksmanship of liquidity takers. The interaction between the LOB and MLOs is modelled as a marked point process. Each MLO specifies a price limit so the order can receive worse prices and quantities than those the liquidity taker targets if the updates in the LOB are against the interest of the trader. In our model, the liquidity taker balances the tradeoff between missing trades and the costs of walking the book. We employ techniques of variational analysis to obtain the optimal price limit of each MLO the agent sends. The price limit of a MLO is characterized as the solution to a new class of forward-backward stochastic differential equations (FBSDEs) driven by random measures. We prove the existence and uniqueness of the solution to the FBSDE and numerically solve it to illustrate the performance of the latency-optimal strategies.
Normal copula with a correlation coefficient between $-1$ and $1$ is tail independent and so it severely underestimates extreme probabilities. By letting the correlation coefficient in a normal copula depend on the sample size, Husler and Reiss (1989 ) showed that the tail can become asymptotically dependent. In this paper, we extend this result by deriving the limit of the normalized maximum of $n$ independent observations, where the $i$-th observation follows from a normal copula with its correlation coefficient being either a parametric or a nonparametric function of $i/n$. Furthermore, both parametric and nonparametric inference for this unknown function are studied, which can be employed to test the condition in Husler and Reiss (1989). A simulation study and real data analysis are presented too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا