ﻻ يوجد ملخص باللغة العربية
The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0 are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and 1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling is observed, increasing in strength as more Co4+ is introduced. At an x value of about 0.65, the temperature-independent contribution to the magnetic susceptibility and the electronic contribution to the specific heat are largest. Neutron diffraction analysis reveals that the lithium oxide layer expands perpendicular to the basal plane and the Li ions displace from their ideal octahedral sites with decreasing x. A comparison of the structures of the NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially with alkali content in the former but is relatively rigid in the latter. Further, the CoO6 octahedra in LixCoO2 are less distorted than those in NaxCoO2. We postulate that these structural differences strongly influence the physical properties in the two systems.
We report here the synthesis of single-phase bulk samples of CoO2, the x = 0 end member of the AxCoO2 systems (A = Li, Na), from a pristine LiCoO2 sample using an electrochemical technique to completely de-intercalate lithium. Thus, synthesized CoO2
We prove the direct link between low temperature magnetism and high temperature sodium ordering in NaxCoO2 using the example of a heretofore unreported magnetic transition at 8 K which involves a weak ferromagnetic moment. The 8 K feature is characte
Based on first-principles calculations, the evolution of the electronic and magnetic properties of transition metal dihalides MX$_2$ (M= V, Mn, Fe, Co, Ni; X = Cl, Br, I) is analyzed from the bulk to the monolayer limit. A variety of magnetic ground
The effect of surface degradation of the thermolectric cobaltite on Raman spectra is discussed and compared to experimental results from Co3O4 single crystals. We conclude that on NaCl flux grown NaxCoO2 crystals a surface layer of Co3O4 easily forms
The iron arsenide Eu3Fe2O5Fe2As2 was synthesized at 1173-1373 K in a resistance furnace and characterized by X-ray powder diffraction with Rietveld analysis: Sr3Fe2O5Cu2S2-type, I4/mmm, a = 406.40(1) pm, c = 2646.9(1) pm. Layers of edge-sharing FeAs4