ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interaction of Stellar Objects within a Common Envelope

42   0   0.0 ( 0 )
 نشر من قبل Paul M. Ricker
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high-resolution, three-dimensional hydrodynamic simulations to study the hydrodynamic and gravitational interaction between stellar companions embedded within a differentially rotating common envelope. Specifically, we evaluate the contributions of the nonaxisymmetric gravitational tides and ram pressure forces to the drag force and, hence, to the dissipation rate and the mass accumulated onto the stellar companion. We find that the gravitational drag dominates the hydrodynamic drag during the inspiral phase, leading to the result that a simple prescription based on a gravitational capture radius formalism significantly underestimates the dissipation rate and overestimates the inspiral decay timescale. Although the rate of mass accretion fluctuates significantly, we observe a secular trend leading to an effective rate of mass accretion which is significantly less than the rate based on a gravitational capture radius. The implications of these results are discussed within the context of accretion of compact objects in the common-envelope phase.

قيم البحث

اقرأ أيضاً

The {alpha}-formalism is a common way to parametrize the common envelope interaction between a giant star and a more compact companion. The {alpha} parameter describes the fraction of orbital energy released by the companion that is available to ejec t the giant stars envelope. By using new, detailed stellar evolutionary calculations we derive a user-friendly prescription for the {lambda} parameter and an improved approximation for the envelope binding energy, thus revising the {alpha} equation. We then determine {alpha} both from simulations and observations in a self consistent manner. By using our own stellar structure models as well as population considerations to reconstruct the primarys parameters at the time of the common envelope interaction, we gain a deeper understanding of the uncertainties. We find that systems with very low values of q (the ratio of the companions mass to the mass of the primary at the time of the common envelope interaction) have higher values of {alpha}. A fit to the data suggests that lower mass companions are left at comparable or larger orbital separations to more massive companions. We conjecture that lower mass companions take longer than a stellar dynamical time to spiral in to the giants core, and that this is key to allowing the giant to use its own thermal energy to help unbind its envelope. As a result, although systems with light companions might not have enough orbital energy to unbind the common envelope, they might stimulate a stellar reaction that results in the common envelope ejection.
We present hydrodynamic simulations of the common envelope binary interaction between a giant star and a compact companion carried out with the adaptive mesh refinement code ENZO and the smooth particle hydrodynamics code PHANTOM. These simulations m imic the parameters of one of the simulations by Passy et al., but assess the impact of a larger, more realistic initial orbital separation on the simulation outcome. We conclude that for both codes the post-common envelope separation is somewhat larger and the amount of unbound mass slightly greater when the initial separation is wide enough that the giant does not yet overflow or just overflows its Roche lobe. PHANTOM has been adapted to the common envelope problem here for the first time and a full comparison with ENZO is presented, including an investigation of convergence as well as energy and angular momentum conservation. We also set our simulations in the context of past simulations. This comparison reveals that it is the expansion of the giant before rapid in-spiral and not spinning up of the star that causes a larger final separation. We also suggest that the large range in unbound mass for different simulations is difficult to explain and may have something to do with simulations that are not fully converged.
We present a new model describing the evolution of triple stars which undergo common envelope evolution, using a combination of analytic and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which causes the outer triple orbit to shrink faster than the inner binary. In most cases, this leads to a chaotic dynamical interaction between the three stars, culminating in the ejection of one of the stars from the triple. This ejection and resulting recoil on the remnant binary are sufficient to eject all three stars from the envelope, which expands and dissipates after the stars have escaped. These results have implications for the properties of post-common envelope triples: they may only exist in cases where the envelope was ejected before the onset of dynamical instability, the likelihood of which depends on the initial binary separation and the envelope structure. In cases where the triple becomes dynamically unstable, the triple does not survive and the envelope dissipates without forming a planetary nebula.
Binary neutron stars have been observed as millisecond pulsars, gravitational-wave sources, and as the progenitors of short gamma-ray bursts and kilonovae. Massive stellar binaries that evolve into merging double neutron stars are believed to experie nce a common-envelope episode. During this episode, the envelope of a giant star engulfs the whole binary. The energy transferred from the orbit to the envelope by drag forces or from other energy sources can eject the envelope from the binary system, leading to a stripped short-period binary. In this paper, we use one-dimensional single stellar evolution to explore the final stages of the common-envelope phase in progenitors of neutron star binaries. We consider an instantaneously stripped donor star as a proxy for the common-envelope phase and study the stars subsequent radial evolution. We determine a range of stripping boundaries which allow the star to avoid significant rapid re-expansion and which thus represent plausible boundaries for the termination of the common-envelope episode. We find that these boundaries lie above the maximum compression point, a commonly used location of the core/envelope boundary. We conclude that stars may retain fractions of a solar mass of hydrogen-rich material even after the common-envelope episode. We show that, under the standard energy formalism, all of our models require additional energy sources in order to successfully eject the common envelope.
162 - R. E. Taam 2006
The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major featur es of this evolutionary phase, focusing on the conditions that lead to the successful ejection of the envelope and, hence, survival of the system as a post common envelope binary. Future hydrodynamical calculations at high spatial resolution are required to delineate the regime in parameter space for which systems survive as compact binary systems from those for which the two components of the system merge into a single rapidly rotating star. Recent algorithmic developments will facilitate the attainment of this goal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا