ﻻ يوجد ملخص باللغة العربية
Stringent restrictions for model building are imposed by a no-go theorem in noncommutative gauge field theory. Circumventing this theorem is crucial for the construction of realistic models of particle interactions. To this end, the noncommutative construction of tensor representations of gauge groups using half-infinite Wilson lines is extended to allow for gauge groups consisting of an arbitrary number of $U_*(N)$ factors. This as well allows representations other than the ones permitted by the no-go theorem.
We consider brane world models with one extra dimension. In the bulk there is in addition to gravity a three form gauge potential or equivalently a scalar (by generalisation of electric magnetic duality). We find classical solutions for which the 4d
A general framework for studying compactifications in supergravity and string theories was introduced by Candelas, Horowitz, Strominger and Witten. This was further generalised to take into account the warp factor by de Wit, Smit and Hari Dass. Thoug
After working out the so called braneworld sum rules formalism in order to encompass Gauss-Bonnet terms, the generation of thick branes is proposed, even with a periodic extra dimension, what circumvents the Gibbons-Kallosh-Linde no-go theorem in this context.
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivaria
Asymptotic particle states in four-dimensional celestial scattering amplitudes are labelled by their $SL(2,mathbb{C})$ Lorentz/conformal weights $(h,bar{h})$ rather than the usual energy-momentum four-vector. These boost eigenstates involve a superpo