ترغب بنشر مسار تعليمي؟ اضغط هنا

Overhauser effect in individual InP/GaInP dots

148   0   0.0 ( 0 )
 نشر من قبل Alexander Tartakovskii
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy.



قيم البحث

اقرأ أيضاً

We demonstrate control by applied electric field of the charge states in single self-assembled InP quantum dots placed in GaInP Schottky structures grown by metalorganic vapor phase epitaxy. This has been enabled by growth optimization leading to sup pression of formation of large dots uncontrollably accumulating charge. Using bias- and polarization-dependent micro-photoluminescence, we identify the exciton multi-particle states and carry out a systematic study of the neutral exciton state dipole moment and polarizability. This analysis allows for the characterization of the exciton wavefunction properties at the single dot level for this type of quantum dots. Photocurrent measurements allow further characterization of exciton properties by electrical means, opening new possibilities for resonant excitation studies for such system.
133 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
Colloidal quantum dots (QDs) of group III-V are considered as promising candidates for next-generation environmentally friendly light emitting devices, yet there appears to be only limited understanding of the underlying electronic and excitonic prop erties. Using large-scale density functional theory with the hybrid B3LYP functional solving the single-particle states and time-dependent density functional theory accounting for the many-body excitonic effects, we have identified the structural, electronic and excitonic optical properties of InP, GaP and GaInP QDs containing up to a thousand atoms or more. The calculated optical gap of InP QD appears in excellent agreement with available experiments, and it scales nearly linearly with the inverse diameter. The radiative exciton decay lifetime is found to increase surprisingly linearly with increasing the dot size. For GaP QDs, we predict an unusual electronic state crossover at diameter around 1.5 nm whereby the nature of the lowest unoccupied molecular orbital (LUMO) state switches its symmetry from $Gamma_{5}$-like at larger diameter to $Gamma_{1}$-like at smaller diameter. After the crossover, the absorption intensity of the band-edge exciton states is significantly enhanced. Finally, we find that Vegards law holds very well for GaInP random alloyed quantum dots down to ultra-small sizes with less than a hundred atoms. The obtained energy gap bowing parameter of this common-cation compound in QD regime appears positive, size-dependent and much smaller than its bulk parentage. The volume deformation, dominating over the charge exchange and structure relaxation effects, is mainly responsible for the QD energy gap bowing. The present work provides a road map for a variety of electronic and optical properties of colloidal QDs in group III-V that can guide spectroscopic studies.
Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires.
Nuclear polarization dynamics are measured in the nuclear spin bi-stability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-pro be measurements of the non-linear nuclear spin dynamics. We measure nuclear spin decay times in the range 0.2-5 sec, strongly dependent on the optical pumping time. The long nuclear spin decay arises from polarization of the material surrounding the dot by spin diffusion for long (>5sec) pumping times. The time-resolved methods allow the detection of the unstable nuclear polarization state in the bi-stability regime otherwise undetectable in cw experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا