ﻻ يوجد ملخص باللغة العربية
We demonstrate, for the first time, a scheme that generates radially-polarized light using Goos-Hanchen shift of a cylindrically symmetric Total Internal Reflection. It allows ultra-broadband radial polarization conversion for wavelengths differing >1 micron.
We report the observation of the Goos-Hanchen effect in graphene via a weak value amplification scheme. We demonstrate that the amplified Goos-Hanchen shift in weak measurements is sensitive to the variation of graphene layers. Combining the Goos-Han
Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole
We present a proposal to manipulate the Goos-Hanchen shift of a light beam via a coherent control field, which is injected into a cavity configuration containing the two-level atomic medium. It is found that the lateral shifts of the reflected and tr
Multi-photon lithography has emerged as a powerful tool for photonic integration, allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements. These structures can be fabricated with
The Goos-Hanchen effect of light reflected from sandwich (three-layered) structures composed of a superconducting YBa2Cu3O7 film and two different dielectric films is investigated theoretically. It has been shown that optical anisotropy of YBa2Cu3O7