ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the complete classification of space curves under affine transformations in the view of Cartans theorem. Spivak has introduced the method but has not found the invariants. Furthermore, for the first time, we propound a necessary and sufficient condition for the invariants. Then, we study the shapes of space curves with constant curvatures in detail and suggest their applications in physics, computer vision and image processing.
Classification of curves up to affine transformation in a finite dimensional space was studied by some different methods. In this paper, we achieve the exact formulas of affine invariants via the equivalence problem and in the view of Cartans lemma a
We examine the local geometry of affine surfaces which are locally symmetric. There are 6 non-isomorphic local geometries. We realize these examples as Type A, Type B, and Type C geometries using a result of Opozda and classify the relevant geometrie
If $mathcal{M}=(M, abla)$ is an affine surface, let $mathcal{Q}(mathcal{M}):=ker(mathcal{H}+frac1{m-1}rho_s)$ be the space of solutions to the quasi-Einstein equation for the crucial eigenvalue. Let $tilde{mathcal{M}}=(M,tilde abla)$ be another affin
Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centoraffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms
This paper focuses on the study of open curves in a manifold M, and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparam