ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum criticality of the Lipkin-Meshkov-Glick Model in terms of fidelity susceptibility

182   0   0.0 ( 0 )
 نشر من قبل Shi-Jian Gu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the critical properties of the Lipkin-Meshkov-Glick Model in terms of the fidelity susceptibility. By using the Holstein-Primakoff transformation, we obtain explicitly the critical exponent of the fidelity susceptibility around the second-order quantum phase transition point. Our results provide a rare analytical case for the fidelity susceptibility in describing the universality class in quantum critical behavior. The different critical exponents in two phases are non-trivial results, indicating the fidelity susceptibility is not always extensive.



قيم البحث

اقرأ أيضاً

We establish a set of nonequilibrium quantum phase transitions in the Lipkin-Meshkov-Glick model under monochromatic modulation of the inter-particle interaction. We show that the external driving induces a rich phase diagram that characterizes the m ultistability in the system. Interestingly, the number of stable configurations can be tuned by increasing the amplitude of the driving field. Furthermore, by studying the quantum evolution, we demonstrate that the system exhibits a set of quantum phases that correspond to dynamically stabilized states.
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite d to improve precision. In particular, we provide exact results for the Quantum Fisher Information of small-size LMG chains made of $N=2, 3$ and $4$ lattice sites and analyze the same quantity in the thermodynamical limit by means of a zero-th order approximation of the system Hamiltonian. We then show that the ultimate bounds to precision may be achieved by tuning the external field and by measuring the total magnetization of the system. We also address the use of LMG systems as quantum thermometers and show that: i) precision is governed by the gap between the lowest energy levels of the systems, ii) field-dependent level crossing provides a resource to extend the operating range of the quantum thermometer.
The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relev ant and show that their entanglement dynamics are very different. A semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping onto the spin squeezing parameter.
We study the dynamics of a Lipkin-Meshkov-Glick model in the presence of Markovian dissipation, with a focus on late-time dynamics and the approach to thermal equilibrium. Making use of a vectorized bosonic representation of the corresponding Lindbla d master equation, we use degenerate perturbation theory in the weak-dissipation limit to analytically obtain the eigenvalues and eigenvectors of the Liouvillian superoperator, which in turn give access to closed-form analytical expressions for the time evolution of the density operator and observables. Our approach is valid for large systems, but takes into account leading-order finite-size corrections to the infinite-system result. As an application, we show that the dissipative Lipkin-Meshkov-Glick model equilibrates by passing through a continuum of thermal states with damped oscillations superimposed, until finally reaching an equilibrium state with a temperature that in general differs from the bath temperature. We discuss limitations of our analytic techniques by comparing to exact numerical results.
71 - Gang Chen , J.-Q.Liang 2006
Lipkin model of arbitrary particle-number N is studied in terms of exact differential-operator representation of spin-operators from which we obtain the low-lying energy spectrum with the instanton method of quantum tunneling. Our new observation is that the well known quantum phase transition can also occur in the finite-N model only if N is an odd-number. We furthermore demonstrate a new type of quantum phase transition characterized by level-crossing which is induced by the geometric phase interference and is marvelously periodic with respect to the coupling parameter. Finally the conventional quantum phase transition is understood intuitively from the tunneling formulation in the thermodynamic limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا