ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction and Analysis of Projected Deformed Products

335   0   0.0 ( 0 )
 نشر من قبل Raman Sanyal
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and for the analysis of deformed products such that specified faces (e.g. all the k-faces) are ``strictly preserved under projection. Thus, starting from an arbitrary neighborly simplicial (d-2)-polytope Q on n-1 vertices we construct a deformed n-cube, whose projection to the last dcoordinates yields a neighborly cubical d-polytope. As an extension of thecubical case, we construct matrix representations of deformed products of(even) polygons (DPPs), which have a projection to d-space that retains the complete (lfloor tfrac{d}{2} rfloor - 1)-skeleton. In both cases the combinatorial structure of the images under projection is completely determined by the neighborly polytope Q: Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig & Ziegler (2000) as well as of the ``projected deformed products of polygons that were announced by Ziegler (2004), a family of 4-polytopes whose ``fatness gets arbitrarily close to 9.

قيم البحث

اقرأ أيضاً

We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe r conditions). We show that any set inner product can be embedded into an inner product space on the associated support functions, thereby extending fundamental results of Hormander and Radstrom. The set inner product provides a geometry on the space of convex bodies. We explore some of the properties of that geometry, and discuss an application of these ideas to the reconstruction of ancestral ecological niches in evolutionary biology.
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
94 - Alexey Glazyrin 2019
In this paper, we use the linear programming approach to find new upper bounds for the moments of isotropic measures. These bounds are then utilized for finding lower packing bounds and energy bounds for projective codes. We also show that the obtain ed energy bounds are sharp for several infinite families of codes.
118 - Alexey Balitskiy 2020
If a convex body $K subset mathbb{R}^n$ is covered by the union of convex bodies $C_1, ldots, C_N$, multiple subadditivity questions can be asked. Two classical results regard the subadditivity of the width (the smallest distance between two parallel hyperplanes that sandwich $K$) and the inradius (the largest radius of a ball contained in $K$): the sum of the widths of the $C_i$ is at least the width of $K$ (this is the plank theorem of Thoger Bang), and the sum of the inradii of the $C_i$ is at least the inradius of $K$ (this is due to Vladimir Kadets). We adapt the existing proofs of these results to prove a theorem on coverings by certain generalized non-convex multi-planks. One corollary of this approach is a family of inequalities interpolating between Bangs theorem and Kadetss theorem. Other corollaries include results reminiscent of the Davenport--Alexander problem, such as the following: if an $m$-slice pizza cutter (that is, the union of $m$ equiangular rays in the plane with the same endpoint) in applied $N$ times to the unit disk, then there will be a piece of the partition of inradius at least $frac{sin pi/m}{N + sin pi/m}$.
Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of Toeplitz square peg problem. We prove Hadwigers 1971 conjecture that any simple loop in $3$-space inscribes a parallelogram. We show that any simple planar loop inscribes sufficiently many rectangles that their vertices are dense in the loop (independently due to Schwartz). If the loop is rectifiable, there is a rectangle that cuts the loop into four pieces that can be rearranged to form two loops of equal length. A rectifiable loop in $d$-space can be cut into $(r-1)(d+1)+1$ pieces that can be rearranged by translations to form $r$ loops of equal length. We relate our results to fair divisions of necklaces in the sense of Alon and to Tverberg-type results. This provides a new approach and a common framework to obtain variants of Toeplitz square peg problem for the class of all continuous curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا