ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of solutions of the isoperimetric problem that are close to a smooth manifold

330   0   0.0 ( 0 )
 نشر من قبل Stefano Nardulli (IM-UFRJ)
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Stefano Nardulli




اسأل ChatGPT حول البحث

In this work we consider a question in the calculus of variations motivated by riemannian geometry, the isoperimetric problem. We show that solutions to the isoperimetric problem, close in the flat norm to a smooth submanifold, are themselves smooth and $C^{2,alpha}$-close to the given sub manifold. We show also a version with variable metric on the manifold. The techniques used are, among other, the standards outils of linear elliptic analysis and comparison theorems of riemannian geometry, Allards regularity theorem for minimizing varifolds, the isometric immersion theorem of Nash and a parametric version due to Gromov.



قيم البحث

اقرأ أيضاً

Let $M$ be an $n$-dimensional complete simply connected Riemannian manifold with sectional curvature bounded above by a nonpositive constant $-kappa^2$. Using the cone total curvature $TC(Gamma)$ of a graph $Gamma$ which was introduced by Gulliver an d Yamada Math. Z. 2006, we prove that the density at any point of a soap film-like surface $Sigma$ spanning a graph $Gamma subset M$ is less than or equal to $frac{1}{2pi}{TC(Gamma) - kappa^{2}area(pmbox{$timeshspace*{-0.178cm}times$}Gamma)}$. From this density estimate we obtain the regularity theorems for soap film-like surfaces spanning graphs with small total curvature. In particular, when $n=3$, this density estimate implies that if begin{eqnarray*} TC(Gamma) < 3.649pi + kappa^2 inf_{pin M} area({pmbox{$timeshspace*{-0.178cm}times$}Gamma}), end{eqnarray*} then the only possible singularities of a piecewise smooth $(mathbf{M},0,delta)$-minimizing set $Sigma$ is the $Y$-singularity cone. In a manifold with sectional curvature bounded above by $b^2$ and diameter bounded by $pi/b$, we obtain similar results for any soap film-like surfaces spanning a graph with the corresponding bound on cone total curvature.
64 - Daniel John 2005
We establish a new symmetrization procedure for the isoperimetric problem in symmetric spaces of noncompact type. This symmetrization generalizes the well known Steiner symmetrization in euclidean space. In contrast to the classical construction the symmetrized domain is obtained by solving a nonlinear elliptic equation of mean curvature type. We conclude the paper discussing possible applications to the isoperimetric problem in symmetric spaces of noncompact type.
Manifold submetries of the round sphere are a class of partitions of the round sphere that generalizes both singular Riemannian foliations, and the orbit decompositions by the orthogonal representations of compact groups. We exhibit a one-to-one corr espondence between such manifold submetries and maximal Laplacian algebras, thus solving the Inverse Invariant Theory problem for this class of partitions. Moreover, a solution to the analogous problem is provided for two smaller classes, namely orthogonal representations of finite groups, and transnormal systems with closed leaves.
124 - Li Ma , Yihong Du 2008
In this paper, we consider the indefinite scalar curvature problem on $R^n$. We propose new conditions on the prescribing scalar curvature function such that the scalar curvature problem on $R^n$ (similarly, on $S^n$) has at least one solution. The k ey observation in our proof is that we use the bifurcation method to get a large solution and then after establishing the Harnack inequality for solutions near the critical points of the prescribed scalar curvature and taking limit, we find the nontrivial positive solution to the indefinite scalar curvature problem.
We consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Hu007folder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا