ﻻ يوجد ملخص باللغة العربية
Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a hairy ball, so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free
We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Ac- tivity Driven (NoPAD) model [Moinet et al. Phys. Rev. Lett., 114 (2015)], a temporal network model incorporating the empirically observed bursty nature of soci
We investigate bond percolation on the non-planar Hanoi network (HN-NP), which was studied in [Boettcher et al. Phys. Rev. E 80 (2009) 041115]. We calculate the fractal exponent of a subgraph of the HN-NP, which gives a lower bound for the fractal ex
Disconnectivity graphs are used to visualize the minima and the lowest energy barriers between the minima of complex systems. They give an easy and intuitive understanding of the underlying energy landscape and, as such, are excellent tools for under
Many real-world complex systems have small-world topology characterized by the high clustering of nodes and short path lengths.It is well-known that higher clustering drives localization while shorter path length supports delocalization of the eigenv