ترغب بنشر مسار تعليمي؟ اضغط هنا

A near-ultraviolet view of the Inner Region of M31 with the Large Binocular Telescope

419   0   0.0 ( 0 )
 نشر من قبل Giacomo Beccari
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 900 sec, wide-field U image of the inner region of the Andromeda galaxy obtained during the commissioning of the blue channel of the Large Binocular Camera mounted on the prime focus of the Large Binocular Telescope. Relative photometry and absolute astrometry of individual sources in the image was obtained along with morphological parameters aimed at discriminating between stars and extended sources, e.g. globular clusters. The image unveils the near-ultraviolet view of the inner ring of star formation recently discovered in the infrared by the Spitzer Space Telescope and shows in great detail the fine structure of the dust lanes associated with the galaxy inner spiral arms. The capabilities of the blue channel of the Large Binocular Camera at the Large Binocular Telescope (LBC-Blue) are probed by direct comparison with ultraviolet GALEX observations of the same region in M31. We discovered 6 new candidate stellar clusters in this high-background region of M31. We also recovered 62 bona-fide globulars and 62 previously known candidates from the Revised Bologna Catalogue of the M31 globular clusters, and firmly established the extended nature of 19 of them.


قيم البحث

اقرأ أيضاً

We present the first deep color-magnitude diagram of the Canes Venatici I (CVnI) dwarf galaxy from observations with the wide field Large Binocular Camera on the Large Binocular Telescope. Reaching down to the main-sequence turnoff of the oldest star s, it reveals a dichotomy in the stellar populations of CVnI: it harbors an old (> 10 Gyr), metal-poor ([Fe/H] ~ -2.0) and spatially extended population along with a much younger (~ 1.4-2.0 Gyr), 0.5 dex more metal-rich, and spatially more concentrated population. These young stars are also offset by 64_{-20}^{+40} pc to the East of the galaxy center. The data suggest that this young population, which represent ~ 3-5 % of the stellar mass of the galaxy within its half-light radius, should be identified with the kinematically cold stellar component found by Ibata et al. (2006). CVnI therefore follows the behavior of the other remote MW dwarf spheroidals which all contain intermediate age and/or young populations: a complex star formation history is possible in extremely low-mass galaxies.
528 - E. Giallongo 2008
We present the characteristics and some early scientific results of the first instrument at the Large Binocular Telescope (LBT), the Large Binocular Camera (LBC). Each LBT telescope unit will be equipped with similar prime focus cameras. The blue cha nnel is optimized for imaging in the UV-B bands and the red channel for imaging in the VRIz bands. The corrected field-of-view of each camera is approximately 30 arcminutes in diameter, and the chip area is equivalent to a 23x23 arcmin2 field. In this paper we also present the commissioning results of the blue channel. The scientific and technical performance of the blue channel was assessed by measurement of the astrometric distortion, flat fielding, ghosts, and photometric calibrations. These measurements were then used as input to a data reduction pipeline applied to science commissioning data. The measurements completed during commissioning show that the technical performance of the blue channel is in agreement with original expectations. Since the red camera is very similar to the blue one we expect similar performance from the commissioning that will be performed in the following months in binocular configuration. Using deep UV image, acquired during the commissioning of the blue camera, we derived faint UV galaxy-counts in a ~500 sq. arcmin. sky area to U(Vega)=26.5. These galaxy counts imply that the blue camera is the most powerful UV imager presently available and in the near future in terms of depth and extent of the field-of-view. We emphasize the potential of the blue camera to increase the robustness of the UGR multicolour selection of Lyman break galaxies at redshift z~3.
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau interferometry in the focal plane, which accesses spatial information out to the LBTs full 22.7-m edge-to-edge baseline. This mode has previously been used to obtain science data, but has been limited to observations where the optical path difference (OPD) between the two beams is not controlled, resulting in unstable fringes on the science detectors. To maximize the science return, we are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI Fizeau mode optimized and routine. Here we outline the optical configuration of LBTIs Fizeau mode and our strategy for commissioning this observing mode.
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use extreme adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
Habitable zone dust levels are a key unknown that must be understood to ensure the success of future space missions to image Earth analogues around nearby stars. Current detection limits are several orders of magnitude above the level of the Solar Sy stems Zodiacal cloud, so characterisation of the brightness distribution of exo-zodi down to much fainter levels is needed. To this end, the large Binocular Telescope Interferometer (LBTI) will detect thermal emission from habitable zone exo-zodi a few times brighter than Solar System levels. Here we present a modelling framework for interpreting LBTI observations, which yields dust levels from detections and upper limits that are then converted into predictions and upper limits for the scattered light surface brightness. We apply this model to the HOSTS survey sample of nearby stars; assuming a null depth uncertainty of 10$^{-4}$ the LBTI will be sensitive to dust a few times above the Solar System level around Sun-like stars, and to even lower dust levels for more massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا