ترغب بنشر مسار تعليمي؟ اضغط هنا

Exo-zodi modelling for the Large Binocular Telescope Interferometer

78   0   0.0 ( 0 )
 نشر من قبل Grant Kennedy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Habitable zone dust levels are a key unknown that must be understood to ensure the success of future space missions to image Earth analogues around nearby stars. Current detection limits are several orders of magnitude above the level of the Solar Systems Zodiacal cloud, so characterisation of the brightness distribution of exo-zodi down to much fainter levels is needed. To this end, the large Binocular Telescope Interferometer (LBTI) will detect thermal emission from habitable zone exo-zodi a few times brighter than Solar System levels. Here we present a modelling framework for interpreting LBTI observations, which yields dust levels from detections and upper limits that are then converted into predictions and upper limits for the scattered light surface brightness. We apply this model to the HOSTS survey sample of nearby stars; assuming a null depth uncertainty of 10$^{-4}$ the LBTI will be sensitive to dust a few times above the Solar System level around Sun-like stars, and to even lower dust levels for more massive stars.

قيم البحث

اقرأ أيضاً

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high-angular resolution and high-contrast infrared imaging (1.5-13 microns). In this paper, we focus on the mid-infrared (8-13 microns) nulling mode and presen t its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in March 2015. With an interferometric baseline of 14.4 meters, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exoEarth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in February 2015 a calibrated null accuracy of 0.05% over a three-hour long observing sequence on the bright nearby A3V star beta Leo. This is equivalent to an exozodiacal disk density of 15 to 30 zodi for a Sun-like star located at 10pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.
The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBTs dual 8.4~m apertures. The interferometric science drivers dictate 0.1 resolution with $10^3-10^4$ con trast at $10~mu m$, while the $4~mu m$ imaging science drivers require even greater contrasts, but at scales $>$0.2. In imaging mode, LBTIs Adaptive Optics system is already delivering $4~mu m$ contrast of $10^4-10^5$ at $0.3-0.75$ in good conditions. Even in poor seeing, it can deliver up to 90% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an ``eye doctor grid search approach for astigmatism and trefoil, achieving 5% improvement in Strehl Ratio at $4~mu m$, with future plans to test at shorter wavelengths and with more modes. We find evidence of NCPA variability on short timescales and discuss possible upgrades to ameliorate time-variable effects
One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale. We seek to quantify the exoplanet detection performance of a space-based mid-infrared nulling interferometer that measures the thermal emission of exoplanets. For this, we have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect over a certain time period. Two different scenarios to distribute the observing time among the stellar targets are discussed and different apertures sizes and wavelength ranges are considered. Within a 2.5-year initial search phase, an interferometer consisting of four 2 m apertures covering a wavelength range between 4 and 18.5 $mu$m could detect up to ~550 exoplanets with radii between 0.5 and 6 R$_oplus$ with an integrated SNR$ge$7. At least ~160 of the detected exoplanets have radii $le$1.5 R$_oplus$. Depending on the observing scenario, ~25-45 rocky exoplanets (objects with radii between 0.5 and 1.5 $_{oplus}$) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four times 3.5 m aperture size, the total number of detections can increase to up to ~770, including ~60-80 rocky, eHZ planets. With four times 1 m aperture size, the maximum detection yield is ~315 exoplanets, including $le$20 rocky, eHZ planets. In terms of predicted detection yield, such a mission can compete with large single-aperture reflected light missions. (abridged)
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use extreme adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the ent ire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100- {mu}m fibre through a projected sky aperture of 0.74, comparable to the median seeing of the LBT site. The 43000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا