ﻻ يوجد ملخص باللغة العربية
In current Bose-Einstein condensate experiments, the shot-to-shot variation of atom number fluctuates up to 10%. In here, we present a procedure to suppress such fluctuations by using a nonlinear p-pi-pbar matter wave interferometer for a Bose-Einstein condensate with two internal states and a high beam-splitter asymmetry (p, pbar not-equal 0.5). We analyze the situation for an inhomogeneous trap within the Gross-Pitaevskii mean-field theory, as well as a quantum mechanical Josephson model, which addresses complementary aspects of the problem and agrees well otherwise.
We present a detailed theoretical analysis of a Fock-state filter based on the photon-number dependent group delay in cavity induced transparency proposed in Phys. Rev. Lett. 105, 013601 (2010). We derive a general expression for the propagation velo
Photon number resolving (PNR) is an important capacity for detectors working in quantum and classical applications. Although a conventional superconducting nanowire single-photon detector (SNSPD) is not a PNR detector, by arranging nanowires in a ser
We show that the well known geometric phase, the Gouy phase in optics can be defined for matter waves in vacuum as well. In particular we show that the underlying physics for the matter waves Gouy phase is the generalized Schroedinger-Robertson uncer
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could m
We present a theory for the diffraction of large molecules or nanoparticles at a standing light wave. Such particles can act as a genuine photon absorbers due to their numerous internal degrees of freedom effecting fast internal energy conversion. Ou